MWCNTs纳米复合材料模拟酶催化的生物燃料电池及生物传感器研究

被引量 : 0次 | 上传用户:JK0803_hlw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当今,面对全球环境恶化和能源危机的挑战,人们在不断探寻利用可再生能源、生物质能源以及可变废为宝的清洁能源技术。生物燃料电池(BFC)被认为是具有发展潜力的新一代电能装置,传统的BFC是利用酶或微生物作为催化剂在环境友好的条件下将生物质燃料中的化学能转化为电能。虽然天然酶具有高度专一性和催化效率高等特点,但是酶电极容易受环境条件的影响,因而限制了 BFC的发展。为了克服酶电极的固有缺点,基于无机纳米材料为催化剂的模拟酶生物燃料电池得到发展。与天然酶相比,无机纳米材料模拟酶具有更为突出的优点,如制备成本
其他文献
卟啉及其金属化合物以其独特的性质在各个领域得到广泛的应用,该体系在Soret带的特征吸收,使得卟啉体系在手性识别领域的研究成为当今的热点。卟啉可以用来识别多种手性分子的绝对构型,而其中对手性单胺的识别非常困难,仍然是非常具有挑战的研究。本文主要分两个部分,分别以双卟啉化合物和三卟啉化合物为主体,研究了几种手性单胺的手性识别。第一部分是以双卟啉为主体的研究。我们设计合成了一系列间苯二甲酰胺键联双卟啉
旱地小麦占全国小麦总面积的30%以上。近几年连续遭受干旱、低温冻害、干热风等自然灾害,旱地小麦受到的影响最大,损失最重。总结各地旱地小麦高产栽培和防灾减灾的经验,可以
拟卤素物种在有机合成、材料学、生物化学、大气化学中起着重要的作用。与常见的NCO、N3、CN等拟卤素相比,NSO自1979年首次被定义为拟卤素以来,对于该基团本身及其共轭衍生物的
锂离子二次电池作为一种能量储存与转换装置,从刚开始的商业化生产到现在,长期的发展和不断的完善,使锂离子电池体系日趋完善,并且已经广泛的应用在我们的日常生活中。随着应用领域的扩展,人们需要电池设备提供更高的能量密度和更好的安全性能。目前商业化的负极材料还是以石墨类的碳材料为主,然而这类材料存在安全隐患并且理论容量(372 m Ah/g)和能量密度较低,因而开发容量高、安全性能好的负极材料代替石墨类碳
学位
本论文主要包括三部分:硫酸氢酯化的富勒烯醇的合成表征及其工艺研究、Nafion/硫酸氢酯化富勒烯醇复合膜的制备及其表征、Nafion/硫酸氢酯化富勒烯醇复合膜的基本性能研究。