论文部分内容阅读
电动车低电压驱动系统具有高安全性、低成本、高可靠性、电磁兼容性好等优势,特别是48V系统在欧洲已经被广泛应用。但是低电压异步电机高速输出功率不足,提高高速转矩成为迫切需要解决的问题。为了解决高速转矩问题以及保证宽转速范围内驱动性能达到最优,必须结合电机设计和控制方法两个方面进行深入研究。本论文以低电压电动车异步电机的优化设计方法和控制方法为研究对象,主要完成以下几个方面的研究工作:高速输出转矩不足是低电压电动车异步电机最大的问题,对此本论文提出了一种利用低速转矩的最大化实现绕组匝数及铁芯长度优化设计的方法,该方法既提高高速输出转矩又满足低速转矩最大化的要求。利用增加转子槽数及三角形接法进一步优化低电压异步电机高速转矩性能,使电动车在单一减速比下既能满足120公里以上的车速又能满足车辆30%爬坡度的难题得到了圆满的解决。针对电动车用异步电机的宽转速范围及非线性特性,本论文提出一种全转速范围内转矩最大化设计方法,实现全转速范围内电机性能整体最优,解决了传统电机设计难以满足电动车电机设计要求的问题。在控制器输出最大电流限制条件下,实现低速重载工况转矩最大化对电动车非常重要。本论文提出一种实现低速转矩最大化的控制方法。首先建立了电流、电压约束条件下的转矩优化模型,并对线性模型和非线性模型均进行了分析计算,表明激磁电流与转矩电流的合理分配才能实现低速转矩最大化。然后将非线性优化模型简化为频率的一维搜索问题而得到最优解,这个最优解同样适合线性模型。最后将优化的激磁电流曲线以及非线性激磁电感在线估计应用于改进的矢量控制系统,有效地实现电机低速重载下电机转矩最大化。仿真和实验结果表明了转矩最大化矢量控制方法的正确性和可行性。车用驱动电机的噪声水平也是一项关键技术指标,但由电机控制器的载波及其谐波导致的窄带电磁噪声则难以改善。针对空间矢量脉宽调制(SVPWM)控制系统,本论文提出一种带电流频谱整形滤波的随机开关频率脉宽调制控制策略,该策略实现电流频谱均匀化的同时滤除固有频率附近电流谐波,有效削弱电机共振,从而抑制噪声。在有限元模态分析得到电机固有谐振频率基础上,推导出带通滤波器传递函数及离散化算法。最后通过仿真和实验验证了该控制策略对抑制电磁噪声的有效性。对于低电压异步电机,从优化高速转矩及结构考虑,采用三角形接法更具优势。本论文首先对三角形接法三相MOSFET驱动的死区问题进行了详细分析,建立了两相平均电压补偿方法。然后详细分析了RC缓冲电路对死区效应的影响,表明对小电流时的死区误差影响较大,并提出改进的补偿方法。最后针对零电流钳位问题,提出一种考虑RC缓冲电路的死区补偿与提前过零算法相结合的两相平均电压补偿策略,在不进行复杂计算的前提下,实现电流方向的判定及死区电压补偿,并解决零电流钳位问题。仿真及实验结果表明了该补偿方法的正确性与可行性。