海上风电大直径单桩基础水平向承载特性研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:xiaojinzhu123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我国近海海域风能资源丰富,可开发量超过5亿kW,已成为新能源发展的重要方向。单桩基础具有结构简单、受力明确的优点,是海上风电的主要基础型式。随着海上风力发电机单机容量的不断增加,目前我国海上风电单桩基础的最大直径已达10m、桩长超过100m、桩重近2000t。直径的增加改变了原有小直径单桩的承载模式,因此针对大直径单桩开展承载模式与承载力计算方法研究十分必要。本文针对大直径单桩基础水平向承载力特性进行研究,主要研究内容和成果如下:
  (1)通过引入运动硬化模型描述土体塑性变形行为,基于三轴试验结果验证了该模型的合理性。采用API规范方法以及有限元方法,分析了桩基础径长比、壁厚及地基土体不排水强度对单桩水平向承载力的影响。研究结果表明,桩基础的水平向承载力受径长比影响最大,水平向承载力与径长比、壁厚及地基土体不排水强度呈正相关关系。
  (2)以有限元分析结果为基础,针对水平荷载作用下的柔性长桩和刚性短桩变形特点,计算得到了柔性长桩和刚性短桩临界桩长的判别公式,与《码头结构设计规范》中的判别公式进行对比。研究结果表明,对于直径小于2m的单桩基础,采用《码头结构设计规范》中规定的临界桩长判别方法,可以较为准确的界定刚性短桩和柔性长桩;但随着桩径的增大,该方法的判断结果与实际情况存在偏差。理论推导和数值分析揭示随着桩基直径由2m增加到6m刚性短桩的判别标准接近2.2T,柔性长桩的判别标准接近3.7T。
  (3)基于非线性运动硬化准则建立了饱和黏土弱化模型,研究循环荷载作用下地基土体强度弱化对桩基水平向承载力、基础刚度和风机整体自振频率的影响。研究表明当循环荷载相同时,桩—土系统抗弯刚度的衰减程度大于水平刚度,抗倾覆承载力的衰减程度大于水平承载力。在一定的循环次数范围内,循环幅值的影响大于循环次数,且风机整体自振频率与桩—土体系统刚度呈正相关关系。
其他文献
随着电力电子全控型功率器件的不断发展,单相脉宽调制(Pulse Width Modulation,PWM)变换器的应用也越来越广泛。单相PWM变换器具有高效率,高功率因数的特点。并且稳定性强,性能优良,通常应用于动态电压恢复装置(Dynamic Voltage Restorer, DVR),电力机车牵引系统,电动汽车充电器以及光伏并网逆变器等电力变换系统的方方面面。但其交直流侧瞬时功率不平衡,使得
随着分布式电源和需求响应机制的普及,促进分布式电源、可控负荷与配电网间的相互匹配,是实现配电网经济建设的保障。现有主动配电系统规划研究未能充分考虑用户与配电公司在规划、运行环节各项决策的可优化空间,难以全面地描述各主体的互动关系。此外,在优化能源结构,提高能源利用效率战略下,配用能侧综合能源系统得到了广泛的推广。现有的综合能源系统规划研究中缺乏快速有效的站址优化方法,同时在能源站供能范围划分过程中
学位
随着分布式供能技术的快速发展,光伏、风能等可再生能源在电力系统中的渗透率快速增长,使得传统电力系统,特别是配电和用电系统的形态和结构发生了巨大变化。分布式电源的间歇性、不确定性对传统电力系统的规划和运行、控制和保护、电能质量等多个方面产生了巨大挑战。由多种分布式电源协调运行而形成的微电网是应对高渗透率分布式新能源发电挑战的一个重要手段。作为微电网和外部电网的纽带,微电网接口变换器通过合理控制可使得
近年来,光伏发电在总发电量中的占比日益凸显,逆变器作为光伏系统中的关键设备,对其开展相关的研究具有重要的现实意义。本文以基于双Buck逆变器的两级式光伏并网系统为研究对象,对控制技术进行了分析研究。首先阐述了两级式光伏并网系统的组成和控制。详细分析了光伏电池板、DC/DC有源钳位反激电路、单相双Buck逆变器和并网LCL滤波器的工作原理,建立光伏电池和逆变电路的数学模型,在此基础上研究了包括MPP
学位
多电平级联H桥逆变器-永磁同步电机系统凭借高输出功率、高控制精度、高逆变效率等优点,广泛应用于高压大功率交流调速场合。目前,将电机侧的矢量控制方法和多电平逆变器侧的调制策略相结合是一种较为经典的控制方式,但其存在PI控制器系数整定复杂、电流内环动态性能有待继续提高等固有不足,因此亟需探索一种先进的控制策略。本文将有限集模型预测控制策略引入多电平级联H桥逆变器-永磁同步电机系统中,将逆变器的离散特性
学位
作为一种新型配电装置,多端柔性软开关(Soft Open Points,SOPs)能够快速、准确地控制自身功率流动,从而影响系统整体功率潮流分布。与联络开关仅具有开闭两种状态相比,多端SOP具有连续功率控制和潮流调节功能,有效克服了联络开关操作次数有限、故障后供电中断等问题,同时可提升系统可靠性和供电能力。现有配电网最大供电能力模型与求解方法将配电网的供电可靠性需求简化为满足刚性N-1安全准则,还
学位
智能电网和能源互联网是当前电力系统的主要发展方向。其中可再生能源的优先接入,精确可靠的预测技术,是其核心功能之一。作为一种受到世界范围重视的绿色可再生无碳能源,风能的波动性、间歇性、随机性等妨碍了其作为优质能源的潜力。可靠准确的风电功率预测,是未来电网的主要基础信息之一,还有助于弥补风能目前作为非优质能源的缺点。准确可靠的风预测,从风速到风机出力的准确折算,是提高风电功率预测效果的两类基本任务。对
学位
近年来,无线电能传输技术被视为一种全新的能源补给方式,对实现极端环境下电能传输与减少废旧电池对环境的危害有着重要的研究意义,相关领域成为科研界聚焦的热点话题。基于磁共振耦合原理的无线电能传输系统,原边激励线圈产生的感应磁场呈辐射状特性,对副边拾取侧多负载传输呈现众多优势。故本文主要探究单原边激励线圈与多负载拾取线圈(“单对多”)方式的无线电能传输系统,其内容主要包含以下三个方面:  首先,基于磁共
柔性直流技术越来越多地应用于新能源并网、远距离电力传输、孤岛供电及交流系统异步互联等方面,柔性直流电网将成为智能电网的重要组成部分。柔性直流电网直流线路短路故障发展速度快,电力电子器件脆弱,对直流保护速动性提出了极高的要求,同时也给保护可靠性带来严峻考验。柔性直流线路故障的快速、可靠识别已成为柔性直流电网发展亟待解决的问题。故障分析是保护原理提出、故障诊断、保护阈值整定的重要基础。因此,柔性直流电
随着中国经济的腾飞,国民的物质生活水平不断提高,出行方式也更为多样便利,其中开车出行是人民生活中必不可少的一部分。但化石燃料作为传统燃油汽车主要的能量来源,其大量使用带来的化石能源危机和环境污染问题制约着我国社会经济的进一步发展。作为传统化石能源的替代,新能源的应用势在必行,新能源电动汽车的应用也顺应时代发展的潮流。其中,纯电动汽车由于无污染物排放,噪声小,结构简单,维修方便,能量利用率高等优点,
学位