论文部分内容阅读
傅里叶叠层显微成像术(Fourier ptychographic microscopy,FPM)是新一代计算成像技术和定量相位成像技术。兼具了相位恢复和相干合成孔径的思想,它可以解决传统显微成像中分辨率与视场相互制约的问题,无需机械扫描能获得十亿像素级图像,近年来已被成功应用于数字病理学等领域。本论文系统地介绍了FPM显微成像技术在光学显微成像技术发展历程上的重要地位,介绍了FPM的基本理论和发展方向,针对目前尚存的系统误差、分辨率极限不明确、图像采集效率低等若干关键问题提出解决方案,提高了测量精度、成像分辨率和成像效率,实现了毫米级成像视场、亚波长量级成像分辨率和单次曝光的时间反演成像。论文主要工作和创新点如下:1.搭建了一套基于平板R/G/B LED阵列照明的FPM成像系统,验证了FPM技术的诸多功能如高分辨率、大视场、像差恢复、景深延拓、定量相位成像等。解决了LED强度不均匀问题,提出了一系列的数据预处理方法,能够有效地抑制噪声并消除杂散光的影响。针对实际中多种误差的混合,提出了无需先验信息的混合系统误差矫正算法(SC-FPM),显著提升了原始FPM重建算法对系统误差的鲁棒性,研究了渐晕效应的影响并提出了对应的两个解决策略。最终总结出了一套完整的无伪影的FPM成像方法。2.在高分辨率FPM成像方面,搭建了基于半球形数字聚光镜实现亚波长分辨率的FPM成像系统(SRFPM)。该技术最终实现了基于4×/0.1NA物镜合成至1.05NA,视场14.6 mm2,使用465 nm光波实现分辨率达到244 nm,景深0.3 mm,对应空间带宽积(Space-bandwidth product,SBP)为24500万像素。该平台具有亚波长分辨率、大视场、高能量利用率等诸多优势,相比于传统基于4×/0.1NA物镜的明场成像,SRFPM扩宽了65倍的SBP。与基于平板LED照明的传统FPM相比,SBP也从原先9700万像素提升至2亿4500万像素,提升到约2.5倍。与基于40×/0.6NA物镜科勒照明下的非相干成像相比,SRFPM同时恢复出了强度和相位图像,SBP提升了245倍。3.在快速FPM成像方面,提出了基于离焦图像快速FPM成像方法(s FPM),可以实现动态的时间反演成像。针对稀疏样品只需采集单幅环形光照明的离焦图像,针对稠密样品也只需要采集两幅非对称的环形光照明图像,通过双相机共光路的方式仍可以实现两倍分辨率的单次曝光实时成像。尽管该工作牺牲了暗场图像的采集,分辨率只提升两倍,但是由于采用20×/0.4NA物镜,有效NA仍然有0.8,可以满足大多数生物应用需求。4.在具体应用方面,参与搭建了基于并行FPM的96通道高通量生物细胞培养成像系统(96Eyes)。该系统主要存在三个方面的工程和技术难点:如何实现低成本的物镜设计、不同培养板的离焦程度和同一培养板不同通道的离焦问题以及由半月形培养液引起的失真、场曲和波矢失配问题。详细分析和阐述了失真、场曲和波矢失配问题及解决方法,提出了自适应波矢校正算法(AWC-FPM算法),该算法能够自适应地校正波矢失配问题,解决了低冗余信息下剧烈像差的稳定恢复和栅格噪声问题,配合数字重聚焦校正场曲实现了无伪影的高成像质量,未来该系统具有广阔的市场前景。