县域城镇道路小汽车碳排放因子计算方法研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:hcjw248
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着县域经济的不断发展,县域城镇道路车流量不断增加,交通拥堵及交通碳排放问题日趋严重。在目前的交通排放研究中,大多集中在大城市或者地区一级,专门对县域城镇机动车尾气排放研究较少,尤其缺乏基于简单交通数据进行路段小汽车碳排放计算的模型。县域城镇道路相对于大城市分级较少、道路形式也较为简单,这使得在有限的道路形式中寻求小汽车碳排放因子与交通变量之间关系的可行性大大提升。在此背景下,本论文结合微观仿真和市面上流行的机动车尾气排放模型,获取大量不同交通情形下的小汽车碳排放因子数据,探寻县域城镇基本路网中小汽车碳排放因子计算方法。首先,在对交通排放测算研究以及交通仿真与机动车排放结合应用研究等内容的研究现状进行总结后,发现目前针对县域城镇交通碳排放的研究较少,小汽车相较于其它交通方式产生的碳排放在各种交通方式中占比最高,而目前城镇道路缺少通用简洁的小汽车碳排放因子计算模型,由此提出本论文研究的必要性。其次,针对调查县域城镇的机动车保有量数据、车流特征数据对VISSIM仿真模型以及MOVES模型进行数据标定,在标定过程中还对部分标定参数对路段小汽车车流碳排放因子计算结果的影响进行了分析。再次,针对调查中选取的12种基本路网类型进行研究,对于每种基本路网类型,通过改变多种不同的路段长度、交通量的组合进行仿真,获取到MOVES模型中关键的平均行程速度参数,通过MOVES模型对每种情形下的小汽车碳排放因子进行计算。另外,基于获取到的大量小汽车碳排放因子数据,对小汽车碳排放因子与仿真中设置的交通变量之间进行相关性分析,得出小汽车碳排放因子计算模型中的影响变量。随后分别以多元线性回归及多元非线性回归的方式进行数据建模,通过对比选出拟合度最高的模型形式并对计算模型中变量的敏感度进行了分析。最后,以长兴、庆城、金堂、武安四县为例,通过交通需求分析获取到四县的路网流量分配数据后,利用本论文中计算模型分别计算出四县城区通勤时段各路段小汽车碳排放因子的分布情况以及四县通勤时段路网小汽车平均碳排放因子。
其他文献
建筑运行能耗作为建筑全生命周期能耗的重要组成部分,其在社会总能耗占较大的比重。因此在城市规划和建筑设计阶段以及后期运营维护阶段对建筑能耗进行有效地模拟预测,可以对规划、设计和运营进行正向反馈。现有建筑能耗模拟是以建筑单体为主的自下而上的模拟方法,这种方法无法应用于城市级、区域级的建筑能耗规划。本文针对现有建筑能耗模拟方法应对城市建筑能源需求的局限性,提出数据驱动模式的城市建筑能耗评估方法,并从技术
镁及镁合金因其优异的生物可降解性、生物相容性以及与人体骨骼相近的力学性能,近年来已成为一种极具潜力的骨组织工程支架材料。但现阶段,与人体松质骨结构相仿的多孔镁合金的制备工艺不稳定,仍然存在着高孔隙率与理想的力学性能难以同时满足的问题,并且多孔结构产生更大的比表面积使得活性本就较高的镁合金腐蚀速率进一步加快,这些都极大地阻碍了多孔镁合金作为骨组织工程支架将来在临床中的应用。针对上述问题,本课题采用负
热光伏技术是一种新兴的绿色清洁能源技术。将低温辐射转化为电能的热光伏电池在许多领域比如航天、军事方面有良好的应用前景。部分Ⅲ-V族化合物半导体具有较窄的禁带宽度,可以吸收长波长的红外光子,对红外发射体的温度要求较低,非常适宜制备热光伏(TPV)电池。本研究选用一种窄禁带半导体碲化铋(Bi2Te3)作为研究对象,碲化铋不仅具备室温下优秀的热电性能,而且具有良好的红外吸收性能,是一种很有潜力的红外功能
以电流型非线性电感Boost变换器为研究对象,针对非线性电感的磁能损耗特性问题,利用非线性电感值跟随开关状态不同而变化的现象,分析非线性电感电流路径与特定斜率斜坡补偿的数学关系,提出了非线性磁芯电感值与磁滞回线关系的数据模型,代入到Boost变换器的开关状态方程中,经过MATLAB数值方法仿真与电路制作实验验证,结果表明,非线性电感对Boost变换器稳定性产生重要影响,且非线性电感和斜坡补偿方法对
超级电容器因其功率密度高、安全性好和循环寿命长等特点,在可穿戴领域展现出巨大应用前景。然而,传统超级电容器体积比电容和能量密度低,无法满足储能器件便携化、微型化的发展趋势。因此,开发高比电容的新型电极材料成为研究热点。MXene兼顾导电性和亲水性,层间距与表面官能团可调,可制作无添加剂电极,有利于提高比电容。但是,MXene片层间较强的范德华力导致其易堆垛,影响电解液的渗透和离子迁移。因此,解决上
学位
由于N极性Ⅲ族氮化物材料在自发极化和压电极化方向上同金属极性的Ⅲ族氮化物材料有明显差异,因此N极性Ⅲ族氮化物材料具有如下不可比拟的优势:AlGaN作为天然背势垒材料可以实现增强型器件;且具有较低的欧姆接触,可实现高频、直流半导体器件;其高表面化学活性在高频率HEMT、高灵敏度探测器与LED应用领域展现出优异的性能。然而,Ⅲ族原子在N极性材料表面上的迁移能力较弱,导致N极性GaN基材料表面通常具有六
热开关通过动态调制热阻的大小,实现对热流的主动调控。高性能的热开关在降低建筑物能源消耗、实现热逻辑线路等方面有着极大应用前景。本文分别对基于电场、磁场调制以及加热频率调制的固态热开关进行了探究。选择具有铁电性和反铁磁性的多铁性材料铁酸铋作为研究对象,设计并搭建了相应测试系统对基于电场、磁场调制的热开关进行实验探究。通过传统3ω方法测试,发现在0~4 k V/cm外电场环境和0~9 T外磁场环境下体
表面增强拉曼散射(SERS)光谱检测技术具有灵敏度高、光谱复用能力强、光学稳定性好的优点,因而在疾病诊断、环境监测和食品安全等领域得到了广泛的应用。开发具有高SERS活性的纳米基底,提高检测灵敏度一直是SERS研究领域的热点之一。其中,由单分散的金纳米粒子有序组装合成的超粒子结构,由于具有高密度的热点区域,可以产生高强度的局域电磁场,因而在高灵敏SERS检测方面具有很好的发展潜力。本文以超粒子纳米
学位