MTA用ZSM-5基催化新材料的制备、改性及其性能研究

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:rita88ye
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
随着互联网规模的飞速发展,网络传输的数据量也在不断增加,日益增长的网络数据对网络带宽和服务器性能提出越来越高的要求。所以,网络数据分发的实时性与可靠性是一个需要解决的问题。  同时,随着网络规模和网络用户数量的不断增加,网络请求往往聚集在少数网络资源上,这就导致了网络请求的负载不均。面对这种情况,如何将一些热点资源迁移到网络低负载区域的节点上,在一定程度上实现网络资源的负载均衡也是一个急需解决的问
随着互联网的快速发展,网络应用如雨后春笋般出现在我们身边。网络的开放性和可扩展性使得人们在一定程度上,可以根据自己的意愿去设计和实现网络应用流的通信和传递方式。大量的应用流数据和各式各样的通信协议规则都为网络应用流量的管理带来巨大的挑战。  在对网络应用流量识别过程中,研究人员通过不断更新识别特征,改进识别算法以应对过去模型和方法对现有网络的缺陷和不足。但对现有的复杂网络流的识别仍存在以下挑战:特
随着互联网的不断普及,网络服务的种类也不断增加,其依托于主机的端口对外提供各种服务如HTTP、SSH、FTP等。网络服务在给我们的工作和生活提供极大的便利的同时也隐藏了不可忽视的风险与隐患,近年来重大网络安全事件不断发生,网络安全态势日益严峻,国家积极加强对互联网安全的治理。在此背景之下,就更需要有效的方法和手段对较大规模的各种网络服务进行统计和监管。  本课题首先对网络服务探测技术进行研究,针对
学位
人脸关键点检测指的是从原始的人脸图像中检测出面部的目标区域。精确的关键点检测在众多人脸相关的科研和应用中起到重要作用,例如人脸识别、人脸动画、人脸姿态估计和人脸建模等。从技术实现上看,人脸关键点检测可以拆分为两个子任务:人脸检测和人脸关键点定位。过去的几年时间里,凭借着优秀的图像特征自动提取能力,深度学习极大促进了人脸关键点检测研究的进展,但随之而来的一些问题也不得不引起重视:主流的人脸关键点检测
命名数据网络,NamedDataNetworking(NDN),是以内容为中心的网络架构中最有代表性的一员。NDN改变了传统IP网络的传输模式,它利用路由节点可以存储数据的特点,实现了分布式的信息交换。NDN天然支持组播和多源多路径的传输模式,它的中间缓存特性也能大大减少网络时延。NDN现在已经在物联网以及传感器网络中有大量的应用。但是,NDN的固有架构只支持Pull型通信模式,缺乏Push型传输
月桂醇聚醚硫酸酯钠盐、十二烷基硫酸钠盐、烷基苯磺酸是我国日化行业磺化装置生产的主要产品。随着产品质量和环保要求越来越严格,磺化产品工艺优化和副产物的资源化利用具有重要的意义。本文主要开展月桂醇聚醚硫酸酯钠盐脱除二噁烷的工艺、十二烷基硫酸钠盐的干燥工艺及磺化碱洗水的处理工艺方面的研究。  首先,论文对月桂醇聚醚硫酸酯钠盐的生产工艺进行优化改进,降低了产品中1,4-二噁烷的含量。对原真空中和工艺系统脱
学位
使用太阳能光催化还原二氧化碳以减少二氧化碳排放是一种很有前景的清洁可再生燃料生产技术。最近几年,具有优异光催化活性的Bi基半导体和具有大比表面积和强吸附CO2能力的碳基载体引起了广泛关注。然而,对于单一的BiOBr光催化剂,存在e--h+对的低分离效率和弱的CO2吸附能力,限制了其在光催化CO2还原中的开发和应用。因此,迫切需要构建一种理想的光催化剂体系,该体系具有优异的光吸收性,光生e--h+对
近年来核能利用的快速发展使得放射性核废物的产生量显著增加,如何安全妥善地处理好这些核废物,使之不会对生态环境和人类健康造成严重威胁,是影响核能可持续发展的关键因素。而开发功能性纳米材料用于高效快速地去除水体中的放射性核素已成为放射性污染防治和环境修复的有效手段。二维过渡金属碳化物(MXene)是一种新型的层状纳米材料,MXene材料因表现出较大的比表面积、丰富的活性位点、较高的离子交换容量、可控的
扩展新型高能量密度化合物在炮弹、火箭弹、导弹战斗部和核武器起爆系统的应用范围是增强我国国防实力的重要保障。进行新型高能量密度化合物的分子设计、合成设计以及在外电场中爆炸特性和安全性的理论研究可为其在外电场中的应用提供可靠的爆炸和安全性参数标准,对于我国国防事业的发展具有重要的理论意义。  探明外电场作用下3-N-氧化咪唑炸药稳定性特征,对于其在外电场作用下的合成和应用具有重要理论意义。鉴于此,本论
聚磷腈材料是一类具有独特P=N结构单元和活性P-Cl基团的新型高分子材料,可以通过官能团的亲核取代来调节它们的物理和化学性质。六氯环三磷腈为一类环状的磷腈化合物,它上面含有六个活性较高的P-Cl键,其可与多元醇或多元胺等化合物发生亲核取代反应得到环状的聚磷腈材料。该课题合成的环交联型聚磷腈微球是以六氯环三磷腈(HCCP)与含有多官能度的有机单体通过沉淀聚合法合成一类新型高分子材料。因其优异的物理和