论文部分内容阅读
Inconel 718高温合金具有良好的抗腐蚀、抗氧化、抗疲劳和抗蠕变等性能,是能源动力、航空航天、石油化工和核电等工业领域不可或缺的重要结构材料。由于Inconel 718合金的服役环境较为恶劣,不可避免由于各种原因造成损伤,带来巨大的能源和经济损失。激光增材再制造技术由于具有能量输入可控、变形量小以及工艺可靠性高等特点,在解决高价值零部件的再制造问题上表现出良好的应用前景。因此,本论文以Inconel 718合金高温部件服役损伤后的快速响应高性能修复需求为研究背景,针对激光增材再制造Inconel 718合金的修复成形规律、热处理机制、界面热影响区控制以及后续热腐蚀机制展开研究,为Inconel718合金零件的高性能修复提供理论基础。本研究工作主要围绕以下几个方面开展:一是激光增材再制造修复层特征尺寸的模型预测和参数优化,获得工艺参数与修复层几何特征的关系模型;二是激光增材再制造Inconel 718合金组织特征及热处理强化机制,着重分析Laves相的溶解机制和δ相的转变机制;三是Inconel 718合金激光增材再制造修复界面特征及力学性能分析,揭示能量输入以及热处理制度对修复界面组织和性能的影响规律;四是激光增材再制造Inconel 718合金高温热腐蚀机制及修复件在模拟熔盐中的力学演变行为研究。本文取得的主要结论如下:(1)利用响应面法构建了再制造工艺参数与修复层特征尺寸之间的回归模型,可快速预测激光增材再制造Inconel 718合金的成形尺寸,最大误差小于8.46%。基于此模型,以稀释率最小和宽高比大于5为目标进行工艺优化,获得激光增材再制造Inconel 718合金的优化工艺参数。(2)通过对修复层组织进行不同热处理工艺研究,获得了激光增材再制造Inconel 718合金热处理过程中的组织变化和沉淀相的析出/溶解机制。固溶处理后修复态试样发生再结晶现象,晶粒细化,但是存在不均匀现象。同时,枝晶间的Laves相逐渐消除,且固溶温度越高,溶解速度越快,越有利于后期时效过程中γ"和γ′强化相的均匀析出。在800℃进行δ时效处理过程中,母材和修复区中的δ相析出形貌和规律有所差别,修复层中的δ相主要通过切变方式在Laves相周围γ"相密排面层错的基础上形核,并沿着γ"的密排方向不断长大,呈细针状析出;而母材中的δ相优先在晶界部分发生形核长大,最终在晶粒内平行式生长。虽然时效处理能够有效提高修复区和母材的显微硬度及抗拉强度,但是随着时效时间的持续增加,硬度及力学性能均呈现下降趋势;此外,不同时效处理后修复件的拉伸断裂部位均位于修复区,断口整齐,呈典型的脆性断裂。(3)根据实际需要,修复件可选用直接时效处理和低温固溶时效热处理用于后续强化。直接时效处理后,其显微组织与修复态组织相似,Laves相少量溶解且周围析出大量γ"和γ′强化相,而低温固溶时效处理后,其组织明显细化,除析出γ"和γ′强化相外,晶界处也析出少量δ相。垂直扫描方式修复条件下,修复态修复件的室温拉伸强度为762.03 MPa,经过直接时效处理和低温固溶时效热处理后,修复件的室温拉伸强度分别可达到1076.85 MPa和1174.10 MPa,分别提高了41.3%和54.1%。(4)修复区与母材过渡区的组织与性能研究表明,修复区到母材之间的元素分布均匀,不存在宏观偏析,但是显微硬度存在明显过渡;修复界面热影响区内晶粒明显粗化同时部分析出相发生溶解,且热输入量越大该区域面积越大。与修复态和直接时效态相比,经过低温固溶时效热处理后的修复界面发生部分再结晶现象,同时热影响区晶粒有所长大;直接时效和低温固溶时效能够有效改善修复区界面处的显微硬度分布,使得热影响区的显微硬度与母材相当;修复态试样、直接时效态试样以及低温固溶时效态试样的平均界面剪切强度分别为608.87MPa、893.27 MPa和948.82 MPa。(5)在650℃情况下,对Inconel 718合金进行高温循环热腐蚀性能测试。热腐蚀试样横截面的分析结果表明,Inconel 718合金的热腐蚀产物有两层,最外层主要由Ni Cr2O4、Ni V2O6、Fe3O4、Cr2O3等氧化物组成,内层主要由Ni3S2组成。不同热处理状态下Inconel 718合金的热腐蚀性不同,高温固溶时效态试样的热腐蚀性能优于直接时效态试样,而直接时效态试样的热腐蚀性能优于修复态试样。根据热腐蚀试验结果分析,不同热处理状态的Inconel 718合金在熔融盐中的热腐蚀机制属于硫化氧化型,这与S和O元素的扩散行为有关。