论文部分内容阅读
氢氧化镁作为阻燃剂被广泛用于高分子材料中。以轻烧粉(主要成分:MgO)为原料生产氢氧化镁的研究中,更多地是用镁盐溶液制备氢氧化镁实验条件的讨论,而对轻烧氧化镁的水化反应和氧化镁蒸氨反应过程讨论较少。因此探讨轻烧氧化镁蒸氨反应过程机理具有理论和工业价值。本文首先以轻烧粉和氯化铵为原料,研究蒸氨温度、反应物配比、搅拌速率、蒸氨时间对溶液中镁离子浓度的影响。结果表明:蒸氨反应适宜条件是T蒸氨温度=100℃,t蒸氨时间=3h,氯化铵与轻烧粉物质的量比为2.1:1,搅拌速率为400 r/min;XRD分析表明,蒸氨反应滤渣中氧化镁以氢氧化镁的形式存在。然后,以两种晶形的氧化镁(纯度>99%)为原料,研究了氧化镁水化反应动力学。结果表明:随着煅烧温度的升高(500℃-800℃),氧化镁晶形均为氢氧化镁前驱体的晶形;片状氧化镁的比表面积从106.248 m2/g减小为23.939 m2/g;块状氧化镁的比表面积从42.741 m2/g下降到22.915 m2/g;片状氧化镁水化反应活化能从47.5061 kJ/mol增加到81.3506 kJ/mol;块状氧化镁活化能从25.8938 kJ/mol升高到66.7397 kJ/mol。氧化镁水化反应属于化学反应控速机理。研究不同镁盐、不同铵盐和铵盐浓度对氧化镁水化率和离子电导率的影响。结果表明:铵盐对氧化镁水化率的影响能力大小为NH4 NO3(29)NH 4Cl(29)NH 4SO4(29)NH4 HCO3(29)CH 3COONH4(29)(N H4)2C 2 O4;随着铵盐浓度的增加,氧化镁的水化率从26.4%提高至69.51%;不同的镁盐溶液均有利于氧化镁水化,对氧化镁水化反应影响依次为:M g(N O3)2(29)MgCl2(29)MgSO4;随着煅烧温度的升高,氧化镁悬浊液离子电导率先升高达到一个最大值逐渐下降。对氧化镁和氢氧化镁蒸氨反应机理进行实验。结果表明:氧化镁蒸氨反应分为两个阶段:第一阶段,一部分氧化镁在铵盐溶液中发生水化反应生成氢氧化镁,另一部分氧化镁和生成的氢氧化镁共同进行蒸氨反应;第二阶段,氧化镁被完全水化成氢氧化镁,蒸氨反应变为氢氧化镁蒸氨体系。