论文部分内容阅读
海洋工程用钢及制造技术是海洋产业发展的基础,目前,海洋工程用钢正向高强、高韧方向快速发展,然而,焊缝金属与母材之间强韧性不匹配,限制了高强、高韧海洋工程用钢的广泛应用。因此,如何合理地设计配套焊材的成分,如何优化焊缝金属的焊后热处理工艺,提高接头综合力学性能,是亟待解决的一个问题。焊材化学成分和焊后热处理工艺是改善焊缝金属微观组织和力学性能的重要因素。在此背景下,本文以Fe-Cr-Ni-Mo系高强钢焊材为基础,系统研究了 V元素和Cu元素对不同焊后热处理焊缝金属的微观组织和力学性能的影响。着重分析了不同组分和不同焊后热处理工艺下熔敷金属中析出相的种类、成分、分布、结构的演变规律及其对强韧性的影响。论文的主要研究内容及结论包括:(1)根据Thermal-calc热力学计算结果分别设计了三种不同V含量和四种不同Cu含量的Fe-Cr-Ni-Mo系焊材。采用多层多道熔化极气体保护焊制备了相应的熔敷金属。将熔敷金属分别在550℃、600℃和640℃下保温2 h后,进行空冷处理。利用单轴拉伸试验和冲击试验对熔敷金属的力学性能进行了评价,并利用常规的表征试验设备和技术对中间焊道的熔敷金属微观组织进行了系统研究。结果表明,V含量和Cu含量的改变对相同状态下熔敷金属的微观组织类型影响不大,主要影响析出相的析出行为。(2)电子探针分析(EPMA)表明,焊态含V熔敷金属的枝晶间富集Cr、Mo、Ni、Mn等合金元素,明显增加了基体组织的淬透性,导致枝晶间的微观组织为马氏体和残余奥氏体。而枝晶干的微观组织以贝氏体为主,并在局部区域出现聚合贝氏体。焊态熔敷金属中的C元素分布较为均匀,没有产生局部富集现象,这主要是因为C元素扩散速度较快,并用菲克第二定律模型证明了实验结果。此外,后续焊道的再热作用使得含V熔敷金属中析出少量的纳米级MC碳化物,起到一定程度的析出强化,其与V元素的固溶强化的协同作用导致随着V含量的增加,熔敷金属的强度增加,冲击韧性降低。(3)焊后热处理的熔敷金属中析出相的分布不均匀。熔敷金属凝固过程中溶质再分配促进了强碳化物形成元素(V和Mo)在枝晶间富集,在焊后热处理过程中,会吸引C原子不断从枝晶干向枝晶间扩散(即上坡扩散),导致C元素在枝晶间发生富集。而且,由于枝晶间存在V和Mo的富集及高密度位错,经焊后热处理的熔敷金属中纳米级M2C或者MC碳化物主要在枝晶间析出,而大尺寸的M3C碳化物在枝晶干析出。与枝晶干相比,枝晶间析出的纳米级MC碳化物尺寸更小。从枝晶间到枝晶干,纳米级MC碳化物的面积分数明显降低。此外,随着V含量增加,纳米级MC碳化物体积分数会增加。纳米级MC碳化物既可以在位错处形核,又可以反过来钉扎位错,因此,随着V含量的增加,焊后热处理的熔敷金属中的位错密度普遍增加。(4)三维原子探针(APT)和透射电子显微镜(TEM)分析发现,在焊后热处理初期,面心立方结构的纳米级MC碳化物中主要富V元素,随着热处理保温时间延长,固溶在基体中的Mo元素不断地向纳米级MC碳化物中扩散,以促进纳米级MC碳化物的长大和粗化,导致大尺寸纳米级MC碳化物中Mo元素的占比高于V元素。(5)焊后热处理过程中,由于Cr、V和Mo元素在马氏体和薄膜状残余奥氏体之间发生再分配,导致枝晶间的薄膜状残余奥氏体转变为铁素体的同时,析出纳米级MC碳化物。(6)含Cu熔敷金属的强度高于不含Cu熔敷金属的强度。但是,焊材中Cu含量在0.5-1.5wt.%变化时,熔敷金属的力学性能改变不大。焊后热处理过程中析出的纳米级Cu相尺寸对温度十分敏感,随着温度的升高,尺寸明显增加。