离子束加工制备超薄膜工艺及应用研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:hughy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着以柔性能源、柔性显示、柔性传感为代表的柔性电子产业迅猛发展,其中核心部件之一柔性透明导电薄膜的高质量制造成为一个关键环节。目前已经开发出的碳纳米管、石墨烯、银纳米线等柔性导电材料还面临着排布随机、制造困难、工艺复杂、成本高、无法大面积制造等种种问题。另外一些透明导电材料如ITO等则存在耐弯折性能有限的问题,所以不能满足实际需求。由于金属具有高导电性、高延展性等一系列优良特性,因此近些年科研人员开始将目光转向金属材料,期望制造出厚度较薄的金属薄膜,以用于柔性电子相关应用。同时在科学界,科学家们也将目光转向极小尺度、极高精度研究中。几纳米厚度金属薄膜在厚度上仅仅是原子量级,据预测将具有常规薄膜所不具备的介电和量子非线性光学等特性,如果能制备出超薄金属薄膜便能在实验上真正验证这一切科学假设。但是由于金属材料本身高表面能特性的缘故,导致金属在沉积过程中呈岛状生长,在厚度较薄阶段,金属薄膜表面呈现出不完整的空隙、沟槽,严重影响使用性能。因此,在正常情况下制造纳米厚度金属薄膜是一个很大的挑战。针对金属薄膜难以加工制备的问题,本文进行了相关研究,主要内容包括:(1)提出基于离子束抛光的薄膜制备工艺。使用该工艺制造的金属银薄膜在同等厚度下,能够实现比传统溅射工艺表面粗糙度更好、导电性更佳、表面缺陷更少的效果。并且在实验过程中制备出鲜有报道的厚度4 nm银薄膜,在电镜下观察形貌仍比较完整。(2)对可能影响离子束抛光工艺的衬底、起始抛光厚度、抛光能量、种子层修饰等工艺参数进行研究,从而推测出影响离子束抛光制备的深层次因素。(3)将离子束抛光制备工艺运用于柔性衬底薄膜制备中,制备出柔性透明导电薄膜。经弯折疲劳试验,通过与商用ITO柔性样品比较,其耐弯折疲劳性能较商用ITO样品提高52倍,具有一定商用价值。(4)通过时域有限差分方法,预测出图案化金属薄膜的可能应用,并结合电子束光刻、离子束刻蚀等先进加工方法,探索出金属薄膜图案化加工工艺,为相关科学研究打下制造基础。本文所述离子束抛光工艺较传统溅射工艺制备薄膜在形貌有明显提升,通过离子束抛光工艺能制备出厚度更薄形貌完整薄膜。相关成果可应用于柔性透明导电领域,具有一定市场前景。并且超薄金属薄膜成功制造使基础科学研究中的小尺度微结构实验成为可能,为相关领域的探索奠定制造基础。
其他文献
现如今,随着我国经济实力的快速提升,机动车的数量也在不断增加,机动车辆保险稳定的占据着财产保险中最大险种的地位。但是在我国的保险市场中,欺诈现象时有发生,据统计,欺诈案件涉及的金额至少占理赔总金额的20%,因此而造成的损失每年超过了200亿元。由此可见,如何准确有效地识别车险欺诈行为,是每个财险公司都需要解决的问题。本文对机动车辆保险欺诈的相关概念进行界定,对信息不对称理论、不完全合约理论和博弈论
生物催化具有反应条件温和、选择性高等特点,因而在工业催化中得到较多的应用。但天然酶通常也存在稳定性差、难以回收等问题,这些问题极大地限制其广泛应用。解决这些问题的策略有两种,一种是通过载体负载生物酶从而提高其稳定性和可回收性;另一种是开发具有生物催化活性的纳米材料。金属有机框架具有比表面积高、孔径和组分高度可调、可化学修饰性等特点,因而受到广泛关注。这些特征使得金属有机框架很合适通过上述两种策略解
找到形状之间有意义的匹配是几何处理中的一个基本问题。在形状匹配领域,人们习惯于将物体看作是一系列离散平面点的集合,而轮廓则是构造任何一个形状的边界线,相比于点集,它多了物体边界的顺序关系,是一种更高级别的视觉信息。近年来,基于轮廓的形状匹配方法取得了快速的发展,其中以形状上下文匹配算法最为经典,但这个领域仍有很多问题没有解决,如:形状匹配的大多数工作专注于寻找形状之间的相似程度,并不追求轮廓点集之
车身覆盖件的设计是整车设计和加工中相当关键的一个环节,目前车身覆盖件冲压工艺参数设计方法大多是采用数值优化方法,这种方法在进行工艺参数求解时容易陷入局部最优解,无法得出理想的加工参数。针对这种情况,本文设计并开发了基于B/S架构和案例推理的车身覆盖件冲压成形工艺参数设计专家系统。本文的主要研究内容如下:(1)确定采用三元向量组来组织表达车身覆盖件冲压案例,并且引入了属性量化概念,对三元向量组中的属
过去十年里,计算机视觉技术快速发展,人体动作识别作为计算机视觉领域重点研究方向之一,成为近些年来的研究热点。人体动作识别根据给定人体骨架关节等带有行为的运动序列进行分析,利用一系列技术方法,分析判别出具体动作类别。有效分析挖掘人体动作序列特征所包含的信息,快速准确识别出对应动作类别,是人体动作识别的重点内容。由于人体动作识别技术功能性强,其在视频监控安防、医疗监护、学习娱乐、自动驾驶汽车等方向有着
纯电动汽车因其以蓄电池作为唯一动力来源,具有低污染、低噪音、能量转化效率高等特点有助于缓解日益严峻的能源与环境问题。在全球各国政府的大力倡导和政策扶持下,纯电动汽车市场发展潜力巨大。但随着纯电动汽车的强势增长,其用户群体的消费和需求逐渐呈现多元化和层次化特性,且用户普遍存在“里程焦虑”现象。为适应市场发展需求和增强用户使用信心,本文依托纯电动汽车的用户真实使用数据,对用户群体进行聚类分析,以刻画不
齿轮箱是众多机械设备中肩负着动力传递之重任的关键部件。对齿轮箱进行合理有效的故障诊断对于保障机械设备的正常工作有着至关重要的作用。作为智能故障诊断的重要环节,对模式识别任务的研究意义非凡。针对故障诊断中现有的模式识别方法的不足,研究了超圆盘(Hyperdisk,HD)分类器原理及性能。超圆盘分类器使用超圆盘模型对类别区域进行估计,区别于凸包(Convex Hull,CH)及仿射包(Affine H
根据Quest Mobile2020年儿童经济洞察报告显示,受益于我国庞大的人口基数以及二胎政策的刺激,每年新生儿数量保持在1000万左右。以80后、90后群体为主体的年轻家长具有较强的消费能力,儿童消费在家庭支出中的占比逐年攀升,儿童经济潜力无限。另一方面,伴随文创产业的迅速发展与儿童家长的教育观念升级,越来越多的家长开始认可文化传承、文化自信对儿童认知发展的影响,儿童也有了更多的机会接触文创产
随着生活水平的提高,越来越多的消费级无人机被广泛地应用于各种领域。尽管无人机的普及使得工作生活更加丰富多彩,但因无人机操作不当、未经许可的随意“黑飞”也引起了诸多安全问题。面对日益严峻的无人机防患问题,本文基于深度学习对具有“低、小、慢”特点的弱小无人机进行视觉检测,从而为反无人机系统提供算法支持,主要工作如下:1)针对现有基于彩色图像的目标检测算法不能实时且高准确率的识别弱小无人机的问题,提出了
对于大型复杂结构,基于频域的损伤识别方法对损伤不敏感,往往难以实现结构损伤的定位和识别,而基于时域的损伤识别方法,则面临计算量大、收敛性差等问题。扩展卡尔曼滤波(Extended Kalman Filter,EKF)作为一种时域识别方法,通过将待识别参数视作扩展状态向量,可实现部分观测信息下的结构参数识别,然而当识别大型结构时,状态向量维数会显著增加,造成识别困难。为了避免上述问题,可对大型结构采