【摘 要】
:
超级电容器(SC)有着超高的功率密度以及快速的充电与放电的能力,但是SC的主要的缺点就是能量密度相对较低。然而,并不存在某种电化学储能器件能同时满足所有用电器的需求。因此,可以根据不同性能上的需求(例如功率密度和能量密度侧重不同)来选择电化学储能器件。同时,作为电化学储能器件的重要组成部分,电解质的电导率、粘度、稳定电压窗口等都会直接影响储能器件的电化学性能。以SC为例,其常用的电解质主要包括有机
论文部分内容阅读
超级电容器(SC)有着超高的功率密度以及快速的充电与放电的能力,但是SC的主要的缺点就是能量密度相对较低。然而,并不存在某种电化学储能器件能同时满足所有用电器的需求。因此,可以根据不同性能上的需求(例如功率密度和能量密度侧重不同)来选择电化学储能器件。同时,作为电化学储能器件的重要组成部分,电解质的电导率、粘度、稳定电压窗口等都会直接影响储能器件的电化学性能。以SC为例,其常用的电解质主要包括有机电解质、离子液和水系电解质。水系电解质相比于离子液和有机电解质,其最大的优点就是电导率高,离子在电解质中高速传导,在超级电容器中表现出超高的功率密度。并且其具有安全性高、易组装、价格低廉等诸多优点。因此,水系电解质是高功率超级电容器中极具应用价值的选择。本文主要研究结果如下:(1)通过分子动力学模拟计算了1 m(mol kg-1)、5 m和21 m三种浓度的双三氟甲磺酰亚胺锂(Li TFSI)电解质的微观结构以及氢键分布。实验和理论计算结果表明,1 m稀溶液随温度的变化理化性能最差,而5 m低浓度WIS(water in salt)在室温和低温下性能非常稳定,而21 m则在室温与高温下表现出稳定的电化学窗口。(2)探究了四种常见的水系电解质Li2SO4、Na2SO4、LiClO4和NaClO4在不同浓度下的电解质结构。结果表明:硫酸根体系的电解质溶解度低是由于阴阳离子之间的强相互作用力使得电解质体相出现大量的团簇结构,这种结构使得电解质物理性质以及电化学性能都有不同程度的下降。但是ClO4-离子却有着更高的溶解度,这依赖于其自身是一种短程各向异性的相互作用离子,阴阳离子之间的相互作用相对较弱,因此不会形成较多大型团簇,这导致其有相对较高的溶解度,也进一步通过增加浓度来优化电解质的物理化学性质。(3)最后,基于对电解质的筛选策略,通过加入水合能力强的Li离子来优化离子液电解质的性能,一方面提升了电解质的电导率,另一方面降低了电极表面的自由水分子,提升了稳定电压窗口。应用该电解质组装的混合电容器也表现出优异的电化学性能。结合分子动力学模拟研究水系超级电容器电解质的微观结构与宏观物理性质之间的联系,从而对电化学性能有着一定的预测。并且实验上充分的证明了我们的策略上是合理的,有着很大的应用价值和应用前景的。
其他文献
环境恶化和能源短缺已成为人类面临的两大难题,而光催化作为一种新型友好的技术手段,可以完美解决上述难题。且光催化技术有着其他方法不可比拟的优势,因此被许多科研工作者广泛研究。尽管光催化技术的运用不需大量的人力物力,但研究表明限制其实际应用的主要影响因素是光催化剂的光吸收能力和内部光生载流子的重组。于是科研工作者也尝试了许多改性方法用于解决这两大瓶颈,比如缺陷工程、构筑异质结以及引入助催化剂等,从而使
利用廉价易得的烯烃作为结构单元来构建新的化学键是有机合成中一种有力且完善的方法。其中,过渡金属催化的烯烃的双官能团化是制备复杂分子最高效的合成方法之一,也可以用来形成一些新的C-C键和C-N键,在有机合成中具有重要的意义。传统的合成方法往往条件较为苛刻,需要用到昂贵的催化剂以及配体,同时面临官能团容忍性较差等缺点。所以,使用廉价过渡金属催化剂实现烯烃的选择性双官能化一直以来也是科研工作者们研究的重
羟吲哚类化合物是一类非常重要的杂环结构,其广泛存在于天然产物和生物活性分子中。尤其是3,3-二取代羟吲哚,因取代基不同可展现出不同的生物活性。因此发展简便、高效的合成方法实现不同官能团化3,3-二取代羟吲哚的合成具有重要的意义。相对于直接对羟吲哚骨架进行官能团化的方法,利用多米诺Heck环化的方法一步构建3,3-二取代羟吲哚的同时实现其官能团化过程具有较高的步骤经济性和原子经济性。在本论文第二至四
荧光纳米团簇具有优越的光学性能和生物相容性,在荧光传感、定量分析、生物医学等领域具有广泛的应用前景。近年来,贵金属纳米簇、普通过渡金属纳米簇、非金属纳米簇等荧光探针得到了不断的发展,高性能、低成本的纳米团簇荧光探针的制备与应用成为了本领域的研究热点。本论文通过简便、快速的方法合成了荧光性能良好的金属纳米簇和碳纳米簇,分别实现了对硫醇污染物和抗坏血酸的灵敏检测。主要研究内容如下:第一章:综述了国内外
土壤团聚体的形成与稳定性在农药的吸附、迁移行为中扮演重要角色。受极端环境与不合理耕种施肥方式的影响,有些地区土壤团聚体遭到破坏,影响到作物产量安全。因此,修复土壤结构、降低农药的迁移非常重要。海藻酸钠(Alg)是天然无公害的多糖,易于凝胶化形成三维凝胶网络结构、具有较强的吸附性能可用于促进土壤团聚体的形成及增强农药的吸附行为。本论文利用高效、高原子利用率的四组分Ugi缩合反应将辛胺键、四苯乙烯基引
水系锌离子电池作为新型二次电池具有很好的发展前景,其中锌金属作为水系锌离子电池负极材料,具有成本低、容量大、氧化还原电位低和环保等优点。但锌金属负极在电池充放电过程中出现诸如枝晶生长、钝化、析氢和形变等问题,会引起电池短路,这严重地影响了水系锌离子电池寿命。锌枝晶生长与氧化锌钝化层形成密不可分,同时镀锌基底形核位点数量和均匀程度、充放电时面电流密度、Zn(OH)_42-和Zn2+浓度等因素对锌枝晶
随着化石能源的枯竭和人们对于环境的日益关注,清洁能源(例如太阳能、风能和潮汐能等)在近些年来得到了全社会的广泛青睐。然而,一方面大多清洁能源存在分布分散和随环境变化的周期变化,需要储能装置进行存储和转运;另一方面新能源汽车和智能化电子设备的快速兴起,需要储能装置进行便携式供电。这些能量存储需求给储能器件(设备)提出了更高的要求。超级电容器就是在这种背景下应运而生,因其具备多方面的优势,如超快充放电
随着核能的发展和核技术的应用,人类对铀资源的需求日益增长,已知海水中铀的储量是陆地资源的数千倍,因此,从海水中提铀就成为另一条获取核燃料的重要途径。吸附法由于具有操作简单、高效和成本低廉的优点,是目前海水提铀最有效的方法。氧化石墨烯(GO)作为最具应用前景的二维材料之一,它可以层层堆叠,具有较大的比表面积,可以用作吸附材料,同时这些堆叠所形成的通道,可以作为不同分子、离子或者有机物的传输筛分通道。
在电解水制氢过程中,位于电解池阳极上的析氧反应(OER)由于其复杂的多电子反应过程所导致的缓慢动力学特征,严重制约着电解水反应的整体效率。因此,通过制备高电催化活性、低成本和优良稳定性的电催化剂来降低过电势,提升OER效率,对促进电解水领域的发展具有重大意义。本论文致力于开发高性能的过渡金属电催化剂并将其应用于OER,通过构筑界面结构与合理设计配位位点等策略,有效地提升了电催化活性。主要内容包括以
随着电子元件的尺寸越来越小,不仅制作工艺难度大大提高,器件的物理和化学性质也很容易发生变化,导致器件性能下降。研究人员们正在寻找可以进一步延续摩尔定律的材料,自成功剥离石墨烯以来,二维(two-dimensional,2D)材料由于其优异的光电性质引起了广泛的研究兴趣并被认为有望大规模应用于未来的微电子设备。其中,黑磷(black phosphorus,BP)是一种仅由磷原子组成的层状2D半导体材