酪蛋白酸钠基泡沫体系的调控及其机制研究

来源 :华中农业大学 | 被引量 : 0次 | 上传用户:cwzhq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
食品组分(蛋白质、多糖和脂质等)及其相态特性(聚集态、胶束态和微/纳米颗粒等)常常通过改变多相界面(液/液、气/液、固/液等)性质、控制界面膜的形成等实现对界面主导型食品体系的理化特性(外观、风味、稳定性、流变性及生物可及性等)的调控,看似简单的食品因具有多组分、多相态、多尺度的特征,导致真实食品体系的深入研究存在极大困难。泡沫状食品如鲜奶油、慕斯、啤酒和蛋糕等因大量的气/液界面的存在,为消费者提供了良好的视觉享受和绵密的味觉质感。然而,维持泡沫体系的稳定却始终存在着巨大的挑战,是食品科学研究中的难点问题。蛋白质泡沫的形成与稳定主要由界面上的分子层决定,其分子层的性质可通过多种方法进行调控,从而合理地改善宏观泡沫特性。因此,对界面活性分子的结构、相互作用、界面行为及其宏观性质之间关系的分层研究已成为目前该领域研究的重要组成部分。基于此,本论文以酪蛋白酸钠(Na-Cas)、单宁酸(TA)/没食子酸(GA)及辛烯基琥珀酸淀粉酯(OSA-starch)/羧甲基纤维素(CMC)三类5种食品组分,构建系列多组分体系,揭示食品多组分间相互作用的机制,建立产物结构特征及其气/液界面行为与宏观泡沫性质之间的关联,为蛋白质基泡沫型食品加工中配料与工艺调控提供参考。本文主要研究结果如下:1.通过光谱学和热力学方法评估了Na-Cas与TA结合导致的浊度、粒径、二级结构及热量的变化。结果显示,Na-Cas与TA的结合导致复合物粒径先减小后增加。过量TA将使蛋白质聚集,从而导致体系浊度增加。TA导致Na-Cas中氨基酸残基的微环境发生变化,β-sheet数量增加,从而引起Na-Cas二级结构变化。相应地,Na-Cas与TA间的结合属于自发的放热过程,大约1.033个TA分子与1个Na-Cas分子结合并且结合由氢键作用主导。2.通过动态光散射(DLS)、荧光探针(ANS)及界面流变技术系统地评估了Na-Cas/TA复合物体相、气/液界面行为和宏观泡沫性质之间的关系。结果表明,随TA浓度增加,Na-Cas/TA复合物的粒径减小,表面疏水性(H0)下降,而其负电荷量逐渐增加。Na-Cas/TA复合物的表面活性随着TA浓度增加而逐渐降低,从而导致Na-Cas/TA复合物体系的起泡性降低。界面流变结果显示,Na-Cas/TA复合物稳定的界面层以弹性行为为主,且界面层复合粘弹模量(E)随TA含量增加而增加,从而使Na-Cas/TA复合物稳定的泡沫体系具备良好的稳定性。3.通过探究Na-Cas/TA复合物在气/液界面上的吸附动力学和界面扩张流变性质以及界面蛋白质组分,在分子层面对Na-Cas/TA复合物气/液界面的稳定调控机制进行了研究。结果显示,由Na-Cas/TA复合物稳定的泡沫体系中气泡的尺寸保持在较小的范围内,并且泡沫在储存的过程中,复合物在界面融合并紧密地包裹在气泡表面,从而形成阻止气泡歧化和聚结的巨大空间屏障。由于氢键作用形成的Na-Cas/TA复合物的粒径小于单一Na-Cas的粒径,导致Na-Cas/TA复合物具有更大的扩散速率。但是,添加TA降低了Na-Cas/TA复合物的表面疏水性及增加了复合物表面电荷量,并且复合物体系的起泡性低于单一Na-Cas,从而说明在本研究体系中主要是表面疏水性和表面电荷量对复合物的起泡性起决定性作用。随着TA浓度的增加,Na-Cas/TA复合物形成的界面层具有更高的扩张粘弹模量(E),这主要归因于TA的连接作用导致界面上Na-Cas间的相互作用增强;复合物形成的界面层兼具刚性和柔性,能够快速准确地对外界的形变做出响应,防止界面因受力破裂,从而维持泡沫体系长期宏观稳定。通过界面组分定量分析发现,TA的添加导致界面上κ-casein的吸附量增多,有利于形成更具弹性的气/液界面膜,从而有助于提高泡沫体系的稳定性。4.根据TA对Na-Cas功能性质的影响规律,对比研究了Na-Cas与GA间的相互作用、界面行为及其泡沫性质。结果显示,Na-Cas与GA的结合主要由疏水相互作用和氢键驱动。随着GA浓度增加,每毫克蛋白质结合的GA恒定增加。Na-Cas与GA结合后,表面疏水性明显降低。适中浓度的GA能够改善Na-Cas的表面活性,增强Na-Cas的泡沫稳定性,并且随着GA含量增加,泡沫稳定性逐渐增加。界面流变结果表明,GA与Na-Cas结合显著提高了复合物界面层粘弹性。与单一的Na-Cas相比,由Na-Cas/GA复合物稳定的界面具有更高的粘弹性,因此宏观上表现出更好的稳定性。通过对Lissajous曲线分析验证了泡沫稳定性与界面粘弹性之间的对应关系,即添加GA加强了界面处蛋白质间相互作用,导致界面层粘弹性增加,从而促进了泡沫体系的稳定。由于界面层的结构复杂性,宏观性质与微观界面性质并不总是一一对应。质量比为1:0.5的Na-Cas/GA复合物具有良好的起泡性,但GA的存在降低了Na-Cas/GA复合物从溶液扩散到界面的速率。5.系统地评估了OSA-starch对Na-Cas基复合体系(Na-Cas和Na-Cas/TA)界面行为和泡沫性质的调控规律。通过线性及非线性流变学方法研究了复合物体系界面层的流变性质,并借助Lissajous曲线定量分析了界面层的非线性流变学行为。结果显示,OSA-starch对Na-Cas基复合体系的泡沫性质有显著地影响。Na-Cas/OSA-starch相较于Na-Cas及Na-Cas/TA/OSA-starch相较于Na-Cas/TA,其复合物体系的起泡性显著提高,同时复合物体系依旧保持了出色的泡沫稳定性。添加OSA-starch明显降低了泡沫体系中气泡尺寸。Na-Cas/OSA-starch复合物拥有最低的初始吸附值,这主要归因于具有表面活性的OSA-starch也能吸附于界面,从而协同降低界面张力。与Na-Cas/TA相比,Na-Cas/TA/OSA-starch复合物体系拥有更低的初始界面张力值以及最终的界面张力,导致Na-Cas/TA/OSA-starch复合物体系拥有更好的起泡性。相比于Na-Cas/OSA-starch复合物,Na-Cas/TA/OSA-starch复合物稳定的界面层具有更高的界面扩张粘弹模量(E),对应Na-Cas/TA/OSA-starch复合物具有较高的泡沫稳定性,因此,界面粘弹性与宏观泡沫稳定性之间存在重要的对应关系。非线性界面扩张流变学和Lissajous曲线的结果显示,Na-Cas/TA复合物形成的界面具有较高的扩张粘弹模量(E),表现出类固体弹性行为,并在扩张和压缩过程中均发生应变硬化,表明该界面是高弹性的二维凝胶结构;在Na-Cas/TA/OSA-starch复合物稳定的界面中,添加OSA-starch的增加了界面膜在扩张时的应变软化和压缩时的应变硬化,说明界面层可能由Na-Cas/TA复合物形成的凝胶结构转变为由Na-Cas/TA及OSA-starch结构域混合而成的结构。6.通过构建相图、表征气/液界面性质以及泡沫的流变性质,评估了OSA-starch在Na-Cas基复合物界面行为和泡沫性质中的调控机制。结果显示,OSA-starch能促进Na-Cas与TA间相互作用,并在p H 6时形成可溶性复合物。通过表征复合物从体相到界面的扩散、吸附及重排的过程,证实OSA-starch的存在可以促进Na-Cas基复合物的扩散以及在界面上的吸附,因此提升复合物的起泡性。Na-Cas基复合物与OSA-starch在气/液界面附近有限的热力学相容性导致OSA-starch通过耗尽机理增加Na-Cas基复合物在界面上的吸附。另一方面,由于结合作用,Na-Cas基复合物与OSA-starch之间存在协同吸附,从而导致表面压力增加(界面张力减小)。由于OSA-starch剪切增稠特性,导致Na-Cas/OSA-Starch和Na-Cas/TA/OSA-Starch复合物稳定的泡沫体系的粘度增加,从而有助于泡沫的稳定。同时,OSA-starch和TA的协同作用改善了泡沫体系整体的屈服应力,从而有助于提升泡沫对外力的响应程度,同样有利于泡沫的稳定。微观流变学的结果进一步证实了上述结论,并进一步揭示了在存在TA的情况下,TA桥连Na-Cas和OSA-starch形成高弹性的界面膜,进而有利于泡沫体系的稳定。7.通过选择不同粘度的羧甲基纤维素(CMC),对比地评估了其对Na-Cas基复合物的界面性质和泡沫性质的调控规律。结果表明,存在CMC时,Na-Cas基复合物的起泡性和泡沫稳定性均提高,其中复合物的泡沫稳定性明显增强。通过分析气泡微观尺寸,我们发现加入CMC后,复合物体系稳定的泡沫中气泡尺寸明显减小,且不随时间推移发生明显变化,由于具有一定粘度的CMC能阻碍界面层间的液体排出,从而保持气泡维持湿润状态。观察气泡界面微观结构发现,Na-Cas/TA/CMC复合物能够在气/液界面上吸附并融合形成紧密的界面膜。此外,通过界面流变分析,我们获得了复合物界面层的相关信息。相比较而言,Na-Cas/TA和Na-Cas/TA/CMC复合物比单一Na-Cas和Na-Cas/CMC复合物具有更高的界面扩张粘弹模量(E),这意味着Na-Cas/TA和Na-Cas/TA/CMC复合物形成的界面膜更具粘弹性,从而泡沫体系具备有更好的稳定性。
其他文献
鱼类生存环境特殊,水体中病原微生物种类复杂,且含量丰富。鱼类黏膜与水环境直接接触,极易受到各种病原的侵袭,威胁到机体健康。在长期演化过程中,鱼类为了应对外界病原的威胁已经演化出了一套有效的黏膜免疫系统,构成了一道严密的免疫防线。黏膜相关的淋巴组织(mucosa-associated lymphoid tissue,MALT)能够启动复杂而精密的先天性和适应性免疫反应,抵御病原微生物的入侵。咽腔和眼
北极海洋红球菌Rhodococcus sp.B7740(Rh sp.B7740)是我国北极科考队第三次科考期间于北极站点B77处(1464?9.28?W,76?58.08?N)25米深的海水中获得的菌株,经16S r RNA序列分析和形态学观察确定其为红球菌。其外观呈现鲜艳的橙红色,生存环境极为特殊,在此之前尚未见相关次生代谢产物的报道。为了探索和了解这株北极海洋红球菌所产红色色素的特殊结构及功能
学位
焦炉煤气是优质的工业副产气资源,其中H2含量约60%,CH4、CO、C02、C2+含量近40%,充分利用焦炉煤气生产能源化工产品,可减少一次化石能源消耗,优化能源结构,实现"双向减排"。该报告结合西南化工在焦炉煤气综合利用领域的研究与工业实践,分别介绍了焦炉煤气制氢、甲烷化制天然气、制甲醇、制乙醇等能源化利用技术的工艺流程、技术经济、应用成果等,并对焦炉煤气利用技术前景进行了展望。该报告对促
会议
崩岗是我国南方热带、亚热带花岗岩区的一种特殊土壤侵蚀类型,其巨大的侵蚀泥沙量常常会造成河流和水库的淤积,掩埋农田,毁坏水利设施等现象,严重制约区域生态环境与经济发展。崩壁作为整个崩岗最活跃的部位,在降雨条件下常常会发生土体失稳,对崩岗的发展有重要影响。因此,弄清降雨诱发崩壁失稳机理对深入理解崩岗的发展过程具有重要意义。基于此,本文以湖北通城、江西赣县、福建长汀及广东五华四个典型花岗岩区崩壁为研究对
现有锂离子电池参数辨识研究较少,为提升锂离子电池模型建立有效性以及参数辨识精度,提出了基于最小二乘向量机的锂离子电池建模及参数辨识方法。利用二阶等效电路模型建立锂离子电池RC等效电路模型,并利用LPV技术建立锂离子电池参数可辨识模型,选取最小二乘支持向量机算法求解参数可辨识模型,实现锂离子电池模型参数的有效辨识。利用二次规划问题代替支持向量机最优化问题,替换高维空间内点积运算,实现锂离子电池RC等
膳食指南是根据食物生产供应及各国居民实际生活情况,将现有的膳食营养与健康的证据研究转化为以食物为基础的平衡膳食的指导性文件,旨在帮助人们做出科学的食物选择,合理搭配膳食,以维持和促进健康,预防和减少营养相关疾病的发生。膳食指南作为科学共识和指导,可直接或间接地指导健康教育工作者、政策的制定者等开展相关工作;作为国家或地区发展食物生产及规划的依据,
期刊
目的探析血透患者动静脉内瘘堵塞原因及心理护理措施。方法以在本院接受血透治疗的60例患者为研究对象,时段选取范围为2019年1月~2020年6月,以抛硬币法进行分组,组别包括试验组与对比组。试验组患者30例予以心理护理,对比组患者30例予以常规护理,比较两组动静脉内瘘堵塞发生情况、护理前后心理状态变化及护理满意度。结果相较于对比组,试验组动静脉内瘘堵塞发生率明显降低,具有显著差异(P<0.05),堵
"城市大脑,是21世纪城市建设伴随着互联网架构的类脑化过程,逐步形成城市的中枢神经(云计算)、感觉神经(物联网)、运动神经(工业4.0,工业互联网)、神经末梢发育(边缘计算)、智慧的产生与应用(大数据与人工智能)、神经纤维(5G、光纤、卫星等通讯技术)。在这些城市类脑神经的支撑下,形成城市建设的两大核心:第一是城市神经元网络(城市大社交网络),实现城市中人与人、人与物、物与物的信息交互;第二
期刊
花香是决定其经济价值和观赏价值的关键因素之一。蜡梅(Chimonanthus praecox L.)是一种多年生落叶灌木,在冬季开花并具有独特的香味。蜡梅的花香主要是挥发性萜类(单萜类和倍半萜类)和苯类化合物的混合物。挥发性单萜生物合成主要起源于质体定位的甲基赤藓糖醇磷酸酯(MEP)途径。到目前为止,关于参与调节蜡梅单萜生物合成的关键基因的信息还很少。在本研究中,鉴定了属于MEP途径的控制单萜的前