论文部分内容阅读
增材制造(Additive Manufacturing,简称AM),也称之为添加式快速成型,是一种基于层片数据的逐层制造技术。自AM诞生以来,该领域的研究主要集中于单材料零件的快速成型技术。近年来,为满足工业产品日益增加的复杂性要求和市场全球化所需要的柔性和高效性要求,多材料增材制造(MultipleMaterial Additive Manufacturing,简称MMAM)技术得到迅速发展,并成为学者们争相研究的热点。MMAM技术可以成型具有复杂材料属性和几何属性的零件以及更多功能的实体零件,例如,功能梯度材料零件(Functionally GradedMaterials,FGM)、复合材料零件(Composite material,CM)及二者材料组合的零件等。MMAM技术可以实现同一层切片上加工不同类型的材料组分进而达到提高产品性能的要求,这是传统的制造工艺几乎不能完成的。本文以异质多材料零件快速成型及其关键技术为研究出发点,提出并实现了应用于多材料零件快速成型的若干算法,主要的研究工作和成果如下:(1)研究了粗糙STL(StereoLithography)模型细分算法,提出一种新的STL文件模型拓扑信息结构,应用Hermite空间曲线插值理论对STL三维网格模型进行细分,细分后的三角形面片数目呈4n增长,可以迅速提高给定STL模型的表面精度;(2)提出了一种新的STL模型切片轮廓快速重构算法,该算法具有高效性,能自动识别材料区域内外轮廓,已应用于本文所提出的STL模型全局切片算法中;实验结果以及算法效率分析对比表明:该算法显著提高了STL模型的切片轮廓重构速度及其切片速度;(3)提出了一种面向制造的基于实体材料映射索引的异质多材料实体零件表示方法,可以有效表示实体的几何属性和材料属性;为实现异质多材料实体零件表示方法,提出了一种材料区域重构算法,并对该算法进行了优化,提出了一种加速算法,算法结果对比表明:加速算法可以起到明显的加速效果;同时,结合上述异质多材料实体零件表示方法,提出了一种多材料添加式制造数据格式(MMAMF),并就该数据格式给出了详细的说明;(4)提出了一种多维功能梯度材料零件非规则离散算法,并将其与现有的技术进行了对比实验;在此基础上,提供了离散单元在多维材料梯度变化下的材料属性计算方法,并将计算结果赋予给离散单元实现了异质多材料实体可视化。(5)研究了多类复合材料零件快速成型方法,为避免多喷嘴间发生碰撞,给出了合理的喷嘴路径规划方法,给出一维、二维功能梯度材料零件快速成型方法,并分别进行了快速成型实验,提出了多维功能梯度材料零件快速成型方法。论文取得的主要创新点如下:(1)提出了具有高效性的切片轮廓快速重构算法,能自动识别材料区域内外轮廓,并为轮廓拓扑关系重建加速算法提供保障;(2)提出了可以有效表示实体的几何属性和材料属性多材料添加式制造数据格式(MMAMF);(3)提出了可实现多维功能梯度材料零件可视化的非规则离散算法;