纳米LiFePO4的Sol-Gel法制备及改性研究

被引量 : 5次 | 上传用户:Biremoon
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
LiFePO4作为锂离子二次电池的正极材料,具有许多优点:170mAh/g的高理论比容量,3.4V的充放电平台,高的热力学和化学稳定性,以及其廉价、无毒给经济和环境带来了益处。然而它固有的低电子电导率和Li+扩散速率,尤其是在低温和高电流密度下,这两个缺陷限制其在动力电池领域的大规模应用。本论文利用溶胶-凝胶法分别制备了表面碳包覆、稀土金属离子掺杂及纳米线的LiFePO4,并应用SEM、XRD等手段进行了表征,用扣式电池、交流阻抗进行了性能测试,得出以下研究结果:1.溶胶-凝胶法制备纳米Li
其他文献
壳聚糖是一种具有多种生物功能的天然高分子,被广泛的应用于生物医药、组织修复等领域。但是壳聚糖一般只溶于酸性溶液,限制了其应用。本文将壳聚糖进行改性,使其与丁二酸酐发生
  SSZ-13分子筛晶体具有介于CO2(0.33nm)和CH4(0.38nm)分子之间的孔道尺寸且具有对CO2优先吸附选择性[1].在天然气(CO2/CH4)混合气分离领域具有良好应用前景[2].采用二次水
会议
  晶态微孔化合物(如磷酸盐、亚磷酸盐、草酸盐等)通常是在水热、溶剂热或离子热条件下合成出来。为消除溶剂对产物结构的影响,我们开发出无溶剂合成法,制备得到系列具有新
  DNA是生命进行繁衍和遗传的关键分子,是生命科学史上最大的发现之一。通过共结构导向剂(CSDA)引入DNA与无机物种之间关键性的桥联作用,使得DNA导向生物矿化成为可能。通过
本课题以下脚料肌醇渣为原料,以稀盐酸为酸解液来制备粗磷酸,通过对粗磷酸净化除杂及脱色处理制备精磷酸,对氢氧化钠和氯化钙进行脱氟后,选用脱氟精制氢氧化钠和氯化钙为中和
  介孔 SiO2由于其有序孔道及大比表面积为水分子提供了良好的扩散通道及大量表面吸附活性点而吸引了湿敏研究者的广泛关注[1-2]。不同孔道结构对材料气敏性质影响的工作已
会议
  CHA型分子筛孔径大小为0.38 nm,介于CO2(~0.33 nm)和 CH4(~0.38 nm)动力学直径之间,且对CO2/CH4具有吸附选择性,CHA 型分子筛是制备高CO2/CH4分离性能的理想材料.然而,在膜
会议
  分子筛膜具有均一的孔道结构和高稳定性,在天然气纯化领域具有极大的应用前景[1],然而低的通量一直是限制分子筛膜商业化应用的一大因素.AlPO-18属微孔磷铝分子筛,具有三
会议
  纤维素气凝胶是新生的“绿色”天然高分子纳米新材料.本研究以氢氧化钠/尿素体系为溶剂,通过溶胶-凝胶和冷冻干燥制备了纤维素/壳聚糖复合气凝胶.采用 SEM、XRD、FTIR 和
会议
  羟基新戊醛(HPA)是一种重要的精细化学中间体,可用于制备新戊二醇(NPG)、螺环二醇、1115 酯等,具有广阔市场应用前景。甲醛和异丁醛的羟醛缩合是制备羟基新戊醛的主要方法,
会议