【摘 要】
:
在高端通用模拟芯片的家族中,高性能ADC由于其对电路匹配性、失真、噪声等要求严苛,一直是研究的难点和热点。为了获得高品质的音效,16位甚至更高分辨率的音频ADC被越来越广泛地应用在如蓝牙、Hi-Fi播放器中。Sigma-Delta ADC由于高分辨率、高集成度、对元器件匹配度要求较低等优点受到越来越多的关注。然而,由于在Sigma-Delta ADC的核心模块Sigma-Delta调制器(SDM)
论文部分内容阅读
在高端通用模拟芯片的家族中,高性能ADC由于其对电路匹配性、失真、噪声等要求严苛,一直是研究的难点和热点。为了获得高品质的音效,16位甚至更高分辨率的音频ADC被越来越广泛地应用在如蓝牙、Hi-Fi播放器中。Sigma-Delta ADC由于高分辨率、高集成度、对元器件匹配度要求较低等优点受到越来越多的关注。然而,由于在Sigma-Delta ADC的核心模块Sigma-Delta调制器(SDM)中使用过采样技术,较高的采样频率将会导致较高的功耗。因此,设计实现高性能、低功耗的SDM成为目前的研究热点。本论文针对传统的单比特调制器所能达到的信噪比有限、高阶系统不稳定问题,采用二阶积分器、四位量化器和128倍的过采样率达到较高的信噪比,及实现较好的SDM稳定性。针对传统结构SDM功耗较高问题,本论文采用前馈结构、使用两组相同的采样电容分别采样反馈DAC与输入信号减小运放输出摆幅,及采用无静态功耗的SCCMFB作为运放的共模反馈电路等策略降低SDM系统功耗。针对采用多位量化器的调制器的非线性问题,本论文采用带有失调消除结构的比较器降低量化器的增益误差,及采用DWA电路降低反馈DAC的非线性。本论文在MATLAB中delsig工具箱中设计并优化了SDM系统传递函数,分析系统稳定性,进行系统级仿真以验证系统的性能。使用MATLAB中SIMSIDES工具箱的非理想模型,仿真得出了系统对积分器、量化器、反馈DAC等的性能要求。基于UMC0.18μm CMOS工艺,设计了功耗较低、增益带宽积较高、压摆率较大的运放,线性度较好的全差分Flash ADC和失调误差较小的高速比较器等模块电路,并利用这些模块电路,设计了性能较高、功耗较低的SDM。本设计仿真结果表明:芯片总的功耗约为1.194m W,在测试信号为20k Hz的正弦信号、采样时钟信号为5.12MHz时,其信噪比为101.3dB,换算成分辨率约为16.5bits。
其他文献
肠道微生物群与人类健康之间的关系越来越被人们所认识,研究表明膳食纤维的摄入能够调节微生物群落的组成和代谢功能从而对人类健康发挥重要的作用。杂豆是膳食纤维的丰富食物来源,主要是来自细胞壁的非淀粉多糖。既往研究发现,根据人类肠型对个体进行分层可能有助于预测对饮食的反应。本课题以杂豆为原料提取纯化杂豆子叶细胞壁多糖,首先通过三位志愿者的混合粪便菌群体外酵解,探究杂豆细胞壁多糖的发酵特性及其对肠道菌群的影
近年来随着电子通讯行业的迅速发展,满足小型化、集成化、多功能化、大功率化需求的一体成型电感成为研究热点。FeSiCr合金粉因具有优异的饱和磁化强度、直流偏置和机械性能,是一体成型电感用粉的理想材料之一,但其低电阻率导致所制备的软磁复合材料在中高频下的应用受限。由于磁粉芯的绝缘包覆工艺同样适用于一体成型电感,因此本文以一体成型电感用FeSiCr合金粉作为研究对象,利用SiO2高电阻率的特性,分别采用
阴影在我们生活中处处存在,最常见的莫过于在晴朗天气因树木建筑物遮挡等产生的随处可见的阴影。阴影虽然说能够提升整个图片的立体感,但另一方面阴影在计算机系统中同时可能也会带来一些不必要的问题,如会使得目标检测以及目标追踪的性能下降。阴影因为存在强度不确定、形状不确定以及背景内容也复杂多样等问题使得去阴影问题较为复杂;但另一方面,在很多时候的同一场景中,光照强度在同一阴影下又是统一的,同时,在非阴影区域
深度烧伤和糖尿病溃疡、压力溃疡、静脉溃疡等难愈合型伤口一直以来都受到医学领域研究人员的广泛关注,而制造一种可以恢复皮肤组织功能的有效材料也是一项亟待解决的难题。近年来,静电纺丝技术是一项可制备结构和功能上模仿细胞外基质支架的重要技术之一,制备得到的纤维材料能支持细胞的生长、增殖、迁移和分化,具有成为皮肤等效物的潜力。静电纺丝和静电喷雾是原理相通的两项技术,基于这两项技术工艺的多功能性和参数灵活可调
伤口的快速有效闭合是临床上面临的重要问题。传统的缝线缝合耗时长,后续拆除对伤口造成二次创伤较大。为了提高伤口闭合效率,组织粘合剂作为替代处理方法日渐发展。目前的商用组织粘合剂中,生物类粘合剂难以平衡材料的力学性能和粘合效果,化学类粘合剂又常具有难以降解和安全性低的限制。贻贝蛋白具有优良的生物相容性和组织粘附能力,其中的邻苯二酚基团是其粘附性能的主要来源。非共价键自组装的主客体交联水凝胶具有制备简单
随着人口老龄化加剧与生活方式的改变,眼底疾病变得越来越普遍。由于获取眼底图像的安全性和成本效益,眼底图片被广泛适用于眼科疾病的筛查与诊断。为了更好的诊断,高分辨率眼底图像是必不可少的。然而,获取高分辨率眼底图像对于硬件设备要求往往比较高。因此,利用超分辨率技术提高眼底图像分辨率是一个不错选择。近年来,利用深度学习来解决医学图像超分辨率成为研究热点。本文针对于基于深度学习的超分辨率算法的现有问题,从
随着城市空间的进一步开发,市政道路与大型综合体建筑物合建的复合体系愈来愈多地出现,市政道路疾驰的汽车带来了振动、噪声超限等问题,同时汽车的低频振动对人体舒适度产生了不可忽视的影响,因此合建建筑物体系采用减隔振措施势在必行。本文以广州市番禺区万博商务中心核心区万惠一路与地下空间合建建筑为工程背景,通过数值模拟与现场振动测试,对汽车荷载作用下的结构耦合振动、浮置板道路的隔振性能及车辆荷载作用下的振动舒
脂环族环氧树脂(CAE)采用光-热双固化技术进行固化,光聚合阶段快速固化和后加热固化可提高制品质量,最终获得机械性能高、电绝缘性能好和黏接性能佳的环氧树脂材料。但是所得的脂环族环氧树脂固化物因为高度交联的三维网络结构,通常呈现较差的韧性,以及树脂基体自身的低导热性缺陷,这两方面的不足都引起了研究者们的重视。本课题针对脂环族环氧树脂的易脆性和低导热性,采用纳米纤维素和氮化硼纳米片对其改性并进行了系统
随着微电网技术的不断发展,多个邻近的微电网接入同一配电区域形成多微网系统,有利于提高系统整体运行的稳定性和经济性。同时,为提高用能效率,推广能源梯级利用,微电网的供能形式也从传统的单一的电能逐渐发展成为冷热电等多能源形式。因此,多微网系统能量优化调度策略成为当前研究的重点。相对于单个微电网,多微网具有利益主体多样化的特点,多微网系统运营主体和子微网主体作为不同的利益主体,享有一定的自主调度权,在优
经异质元素掺杂改性的碳材料具备良好的电子和化学性质,在传感检测、水处理等领域有着广泛应用。近年来,研究者不断报道了石墨烯、多孔碳、碳纳米管、纳米纤维以及富勒烯等碳材料的掺杂方法及应用。但这些制备方法存在步骤复杂、掺杂量低、不稳定等缺陷。本文采用硬模板法,选取成本低廉、来源广泛的麦羟硅钠石(MAG)作为模板、吡咯单体作为碳源和氮源一步合成前驱体,用于制备氮掺杂纳米碳材料,步骤简单,制备的氮掺杂纳米碳