论文部分内容阅读
蒎烯是最具有代表性的萜类化合物之一,主要来源于松属植物分泌的松脂经蒸馏而得到松节油。其中蒎烯加氢反应的产物有顺式蒎烷和反式蒎烷两种,顺式蒎烷具有非常重要的工业应用价值,可以合成多种中间体比如芳樟醇、二氧月桂烯醇、香茅醇以及玫瑰醚。过渡金属镍常应用于催化加氢反应,包括雷尼镍、纳米镍、负载型镍基催化剂、非晶态镍基催化剂以及其他元素掺杂的镍基催化剂等。虽然催化剂的活性很高但是对顺式蒎烷的选择性并不如贵金属铑催化剂。离子液体又称为室温离子液体,在催化反应中可以作为反应溶剂、催化剂以及活性组分的修饰剂。将离子液体均匀涂覆在固体催化剂表面形成单分子层的离子液体薄膜(SCILL),由于单分子层离子液体薄膜只有几个纳米厚度,其对催化反应造成的传质传热影响可以忽略,节约了离子液体的用量,降低了生产成本。本研究使用了废弃的重油流态化催化裂化(DF3C)触媒作为催化剂的载体。DF3C由于在使用过程中表面积累了大量的有机物以及重金属成分比如镍、钒、铁等而导致催化剂失活,DF3C一般通过填埋的方式进行处理,但是这种处理方式严重污染了地下水,危害人类的健康,是一种环境不友好的方式,同时也造成了资源的浪费。本论文的研究内容如下:以N-甲基咪唑、1-氯丙醇以及四氟硼酸钠为原料,采用微波辅助加热的方式经过两步合成法制备N-(2-羟乙基)-3-甲基咪唑四氟硼酸盐,并采用1HNMR以及FT-IR进行表征分析。采用等体积浸渍法以及程序升温还原技术制备DF3C负载镍催化剂(Ni/DF3C)。将制备的镍基催化剂与不同离子液体含量的丙酮溶液进行湿法浸渍制备不同离子液体负载量的催化剂(IL-Ni/DF3C)。通过氮气吸附脱附测试、X-射线衍射、扫描电镜、傅里叶红外以及X-射线光电子能谱分析等分析技术对催化剂进行形貌结构的表征分析。氮气吸脱附测试表明经过焙烧后的DF3C的比表面积增加,说明未处理的DF3C催化剂表面有大量的积炭存在;X-射线衍射测试表明DF3C是由A1203、ZSM-5以及Y分子筛构成,离子液体的涂覆对镍的晶型结构并没有很大的影响。使用FT-IR检测离子液体分子的结构组成;X-射线光电子能谱测试表明经过离子液体修饰后的镍基催化剂会有一定的化学位移,说明离子液体与催化剂的活性位存在一定的化学作用力。将IL-Ni/DF3C应用于蒎烯催化加氢反应中,考察了不同离子液体涂覆量对催化剂加氢反应活性以及选择性的影响,经过离子液体修饰后的催化剂对顺式蒎烷的选择性有较大的提高,在110℃、H2压力5.5MPa、135min后α-蒎烯的转化率可以达到00(?)左右,顺式蒎烷的选择性为08(?)。探究了温度以及氢气压强对反应速率以及转化率的影响,升高温度以及氢气压强对反应速率以及转化率有着较好的促进作用,但是对顺式蒎烷的选择性影响并不是很大。对催化剂的使用寿命进行了测试,无离子液体修饰的镍基催化剂在重复使用4次之后催化剂的活性有着很明显的减弱,离子液体改性后的催化剂的催化活性在重复使用13次之后都能保证较高的催化活性,说明离子液体能够提高催化剂的选择性同时还能够起到对活性金属镍的保护作用。重复使用13次催化剂的活性以及选择性有所减弱主要由离子液体在多次循环使用过程中存在离子液体的流失造成的。为进一步研究SCILL型催化剂,使用活性炭为催化剂载体,采用湿法浸渍以及程序升温还原技术制备了活性炭负载的镍基催化剂(Ni/C),通过等体积浸渍的方式将催化剂与不同离子液体含量的丙酮溶液进行浸渍,制备了不同离子液体负载量的催化剂,采用TEM、XRD、XPS以及BET等分析技术对催化剂进行表征分析。将不同离子液体负载量的Ni/C催化剂用于α-蒎烯催化加氢反应,考察了温度、氢气压强以及离子液体负载量对催化剂活性以及选择性的影响,结果表明与以DF3C为载体的催化剂效果一致。对催化剂的稳定性进行了测试,催化剂重复使用11次,催化剂的活性以及选择性均未有明显的降低。