【摘 要】
:
微创血管介入手术因其术中创口小、病灶定位精准、器械递送灵活、安全性高、术后痊愈快等优势,已成为临床上治疗心血管疾病的主要方式之一。于此同时,医生在血管介入手术机器人辅助下进行人机协同手术能够进一步提高手术的治疗精度与安全性,避免X射线对医生辐射,并使远程手术治疗成为现实。因此血管介入手术机器人已成为医工领域的研究热点。临床上,为保证介入手术的成功性,手术机器人的主从同步控制需具备较高的稳定性与跟随
论文部分内容阅读
微创血管介入手术因其术中创口小、病灶定位精准、器械递送灵活、安全性高、术后痊愈快等优势,已成为临床上治疗心血管疾病的主要方式之一。于此同时,医生在血管介入手术机器人辅助下进行人机协同手术能够进一步提高手术的治疗精度与安全性,避免X射线对医生辐射,并使远程手术治疗成为现实。因此血管介入手术机器人已成为医工领域的研究热点。临床上,为保证介入手术的成功性,手术机器人的主从同步控制需具备较高的稳定性与跟随性,使机器人动作执行稳定不产生振荡,且主从端动作高度同步,以满足医生操作要求。但机器人主从端交互指令存在传输时延且大小波动,严重影响系统的同步控制性能。针对机器人的主从同步控制以及指令传输时延对系统同步控制性能影响,本文通过研究和分析相关技术,研制出手术机器人系统,并以此研究平台,对系统的主从同步控制展开研究。本文的主要工作包括:(1)针对传统血管介入手术方式存在的弊端并结合手术中医生的操作流程,研制出主从遥操作式手术机器人系统。(2)针对机器人主从端遥操作中交互指令的传输时延以及指令粘连,提出多连接自适应固定时延通信方法,保证指令有序可靠传输且将传输时延进行可调整式固定。(3)针对机器人主从间指令传输时延对系统同步控制稳定性与跟随性的影响,对模糊PID控制方法与Smith预估控制方法展开研究并设计Smith-Fuzzy控制器降低控制系统对被控对象模型精确度的依赖以及系统时延环节对其的影响。进一步应用多连接自适应固定时延方法降低指令传输时延波动对系统的影响。经仿真试验验证,系统在Smith-Fuzzy控制器作用下,有效克服指令传输时延对系统性能影响,主从端同步控制的稳定性与跟随性满足设计要求。(4)搭建系统-人体血管模型实验平台和系统-动物实验平台,测试已研制手术机器人系统的主从同步控制的跟随精度与稳定性,以及验证手术机器人系统在临床上的可行性与安全性。
其他文献
自然灾难把人类生活环境变成了废墟,为了把自然灾害带来的损失降到最低,需要在灾后对被困的人员实施探测救援,这其中过程,无线通信技术起到了至关重要的作用,一方面通过无线通信技术,救援团队之间能够进行及时的沟通,另一方面,能通过无线通信技术实现通信网络与终端设备的上下行数据交换,可以获取被困人员的实际位置信息,从而给予高效的救援。但是,应用无线通信技术于废墟环境下的终端设备位置信息获取,需要克服几个信号
二十一世纪以来,大数据、云计算、物联网、增强现实和虚拟现实等新兴互联网技术蓬勃发展,各式各样的互联网业务层出不穷,随之而来的是呈井喷式增长的网络数据流量、与日俱增的终端用户对大带宽数字服务需求。而光纤通信系统作为互联网和移动通信网络的骨干核心,承载了绝大部分的网络数据流量。因此,如何在光纤通信系统中实现更大的系统容量、更佳的系统性能、更高的信息速率、更长的传输距离、更低的系统功耗以及更灵活的调制方
时代一直在往前进步,而互联网是其发展的产物,人们对它依赖已经很大,人们不在为产米油盐担心,生活质量提高了,也付出了一定代价,人们压力变大,所以交友时间与质量都变低了,并且现实生活中的社交往往都是在熟人之间,方式单一且交友圈小,所以基于互联网的社交对于现代人来说是十分重要的。单一应用架构的社交系统很难应对海量用户,所以急需构建基于微服务架构的社交系统,这样不仅能应对海量用户,还可以很方便的为系统增加
日冕物质抛射(Coronal Mass Ejection,CME)是对日地空间环境有着巨大影响的太阳爆发活动,当其到达地球时可能会引发地磁场扰动并导致地磁暴。快速准确地预测可以引发地磁扰动的CME事件并预计其到达地球的时间,对于减少CME造成的危害而言至关重要。传统方法在预测CME到达地球时间时大都只针对具有对地有效性的CME事件,即只针对能够到达地球并引发地磁扰动的CME事件,但是现有技术无法预