子遗植物水松保护生物学及其恢复技术研究

来源 :福建农林大学 | 被引量 : 0次 | 上传用户:WIN_Hardy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
水松为稀有的松柏纲乔木,是我国特有的单种属植物,国家一级保护树种。作为古老的活化石植物,水松起源于中生代,经第四纪冰期后残存,现已成为罕见孑遗树种,仅零星分布于我国南方部分地区,在研究杉科植物的系统发育、古植物学和第四纪冰期气候等方面都有重要科学价值。由于历史气候变迁、人为干扰、生境被占、演替压力等因素,目前水松分布范围不断缩小且呈片断化,天然种群数量剧烈下降,大部分水松分布地仅剩几株孤立木,这一古老孑遗植物面临灭绝危险,如何保护水松稀有珍贵基因与珍稀种质资源,扩大水松种群规模已成为当务之急,开展必要的保护生物学和濒危机制及种群恢复研究刻不容缓。   本研究综合运用种群生态学、保护遗传学、繁殖生态学等理论与方法,较全面、系统地开展水松自然地理分布、种群数量特征、遗传多样性、扦插繁殖技术等方面研究。通过种群生态学特性和数量特征研究,分析种群结构和动态规律及演化趋势;通过种群遗传多样性与遗传变异研究,分析水松物种水平和种群水平遗传多样性,比较现有水松人工种群与天然种群在遗传多样性和遗传结构方面的异同,探讨人工种群遗传结构是否得到恢复;从繁殖过程中播种苗生长过程探讨水松幼苗生长规律,通过试验不同因素对水松扦插繁殖生根率及生根性状的影响,建立良好的水松扦插繁殖体系;揭示水松濒危机制并提出科学保护对策。主要研究结果如下:   (1)运用植被与气候关系指标探讨水松地理分布与气候因子相互关系,揭示水松主要种群的地理分布规律。结果表明,水松分布范围为中亚热带北纬13°21’~37°36,东经102°40’~121°29,主要分布在珠江三角洲、长江中下游及闽江流域,垂直分布范围为25~2000 m,不同分布区垂直分布差异很大。水松地理分布对气候因子要求是温暖湿润,光照充足,适宜分布区气候指标范围为:年平均温度12.10℃~22.60℃,年降水量1199.60mm~2231.00mm,年平均相对湿度62.00%~82.00%,年平均日照时数1589.20 h~2781.60 h。气候水热指标对水松地理分布影响很大,按影响力大小排序依次为低温因子>相对湿度>高温因子>年日照时数>年平均降水量。   (2)运用种群生态学原理和方法,分析水松种群结构和动态规律及其演化趋势。   天然种群方面:①运用直径分布模型拟合方法,探讨水松天然林种群直径分布规律。主要树种胸径和地径分布用正态分布函数拟合效果最好,β分布次之,Weibull分布、Г分布和对数正态分布拟合效果不理想。水松中老龄径材较多,伴生树种以中小径阶林木为主,正态分布参数与林分直径呈显著线性关系,用林分特征因子预估正态分布参数值十分理想。②运用“空间代时间”方法,以胸径结构代替年龄结构分析水松种群结构特征,结果表明年龄结构为倒金字塔型,呈现大树过熟、幼龄木数量极少,种群天然更新差的现象,说明该种群属于衰退型,稳定性差严重影响种群发展,年龄结构与水松生物学特性及其生境条件有关。③以种群生命表及生存分析理论为基础,运用“横向代纵向”方法编制水松种群静态生命表,分析各龄级个体死亡数量、存活率及后代生长趋势,绘制种群存活曲线、死亡率曲线、死亡密度曲线、危险率函数曲线。水松种群存活曲线属于Deevey-Ⅲ型,反映了水松种群数量动态变化趋势。死亡密度函数与危险率动态变化规律基本一致,累计死亡率单调递增,生存率单调递减,累计死亡率和生存率上升或下降幅度均表现出前高后低,死亡密度函数表现出死亡个体数随着龄级曲线起伏,呈现两端高、中间低趋势。④应用谱分析方法揭示水松种群更新动态过程及其稳定性特征,结果表明水松种群天然更新过程通过不同龄级的株数分布波动表现,呈现出大周期内有小周期的多谐波迭加特征。基波A1=1.752最大,反映了水松种群最基本的周期波动,小周期波动性与高生长特性基本一致。⑤运用聚集度指标法、Iwao方程评价水松种群空间格局及其动态变化规律,结果表明水松种群空间格局呈聚集分布,形成机制与样地所处的地理环境关系密切。不同取样尺度下的分布格局变化研究表明,不同取样单元上,水松种群均表现为集群分布,且在25m2取样单元上聚集度最高。⑥运用有限空间种群增长的逻辑斯谛模型探讨水松种群基面积增长规律,通过改进单纯型法进行最优拟合。研究结果表明,洪-Logistic新模型比其它种群增长模型更符合水松种群实际增长趋势。该模型残差平方和Q为1.7831,内禀增长率为0.7604,特征返回时间Tr为1.3116径级年,最大增长速率出现在第8径级,即胸径为48~54 cm时期,平衡位置在环境容量为58.1991m2/hm2处。可见水松种群增长较慢,平衡性脆弱,受破坏后恢复时间较长。⑦采用Lotka-Volterra竞争模型研究种间竞争关系,水松及其伴生树种优势度分别为63396 cm2·hm-2和15877 cm2·hm-2,相对优势度分别为79.97%和20.03%,竞争系数达0.8231,种内竞争大于种间竞争。预测平衡时水松与伴生树种的相对优势度分别为69.21%和30.79%,呈现共优状态,说明群落相对稳定,但有逐渐被伴生树种取代趋势。⑧运用R型聚类分析方法对水松种群的25个数量性状进行聚类分析,探讨水松数量性状间的相互关系及其对水松生长、遗传及经济性状的影响。结果表明:水松材积与树高、冠长、胸径等性状呈显著正相关,生长性状与光合作用面积有关;树高是决定材积的第一要素;水松在干形遗传、自然整枝性方面的遗传性较为稳定。⑨将分形理论与地统计学原理相结合,计算水松不同种源树高和胸径生长的分形维数,揭示其空间分布变异规律和分形特征。结果表明,水松不同种源胸径、树高生长特性的分维值分别为1.635和1.824,胸径分维值小于树高分维值。为反映水松种源的空间差异性,在评价水松种源时应选取胸径生长指标。   人工种群方面:①运用5种概率分布模型对斗门水松人工同龄纯林种群直径分布进行拟合,比较不同概率分布的拟合效果,探讨其直径结构特征。结果表明,水松人工林中小径阶的林木占多数,处于森林发育前期阶段,林分直径呈对称分布,变动范围不大。Weibull分布模型的或然误差值更小,拟合精度更高,为最优拟合模型。变动系数、偏度、峭度等特征值符合人工同龄林生长特点。与天然种群相比,人工同龄纯林表现出特有的直径结构规律,说明不同群落类型、不同密度、不同平均直径和生长阶段的水松种群,其直径分布规律存在差异。②运用回归分析方法,研究各竞争指标与林木胸径生长量的相关关系,在选择适合竞争指标基础上,建立水松人工林单木生长模型。结果表明,林木间距离对单木生长的影响不明显,相对树高、相对冠幅和冠长率与胸径生长量关系密切,是其主要影响因素。分别建立水松人工林相对树高、相对冠幅及冠长率与平均胸高断面积生长量的拟合方程、单木生长模型和林分蓄积量模型,拟合精度高。③运用森林自疏过程中密度变化规律模型,研究水松人工林自然稀疏机制,建立了林分总断面积与种群密度关系模型、单株材积与种群密度关系模型、种群自然稀疏规律模型,回归拟合精度高,可应用于指导水松人工林经营过程的密度管理与密度控制。④拟合水松树高胸径曲线方程,较好反映了树高与胸径的正相关性。运用Weibull分布能较好地拟合胸径和树高分布,建立的树高Weibull分布模型拟合效果良好,能进一步对树高生长进行预测。⑤探讨了水松人工林群落稳定性,阐述了斗门水松林保护现状,提出相应的保护措施。   (3)采用ISSR分子标记技术对水松主要分布区的8个种群共136个体进行遗传多样性分析。用10条随机引物共检测到95个扩增位点,其中多态位点37个,多态位点百分率(P)为38.95%。与其它濒危裸子植物相比,水松在种群水平和物种水平都具有较低的遗传多样性。不同种群间遗传多样性差别较大,多态位点百分率(P)、Neis基因多样度(He)、Shannon信息指数(I)的平均值分别为33.56%、0.1078、0.1902,He和I大小变化趋势与P大致相同;物种水平Ae、P、He和I分别为1.2819、38.95%、0.1608、0.2360。各种群间基因分化系数GST为0.3982,基因流Nm仅0.3778,表明水松种群间存在一定程度的遗传分化,但种群内个体间变异在其遗传变异中占主导地位,UPGMA聚类分析反映出水松种群遗传距离与地理距离存在正相关性。水松具有较低的遗传多样性水平,与其地理环境与气候变迁以及人为活动干扰密切相关。人工种群遗传多样性明显低于天然种群,种群间遗传分化不如天然种群强烈。4个天然种群的P、He、I平均值分别为39.32%、0.1499和0.2202,远远高于人工种群平均值26.98%、0.1113和0.1558,天然种群遗传分化系数及平均遗传距离(GST=0.4513,D=0.0301)明显高于人工种群(GST=0.2836,D=0.0192)。遗传多样性时空变异研究表明,在一定范围内,水松种群遗传多样性随年龄增长而增加,随海拔升高而增加。基于水松种群遗传学和生态学的研究结果,提出应加大对遗传多样性高的水松种群保护力度,加强水松种群间基因交流,以最大限度地保存水松资源的遗传多样性。   (4)运用扦插繁殖技术,探讨不同激素种类、激素浓度、处理时间、不同扦插基质及插穗的选择等因素对水松扦插生根率及生根性状的影响,建立较好的水松扦插繁殖体系,为水松无性系规模化生产提供技术保障。总结出水松扦插繁殖的最佳技术组合:于3月初选择生长健壮、母株年龄相对小的水松植株,取枝条基部1 a生以上枝条制穗,去除下部叶片,并使切口平滑下斜且靠近节基部,插条长度约8~12 cm,保留顶芽及少量侧枝,随采随插随处理,剪好的插条要下部齐整捆好,放入0.3%的多菌灵药液中进行消毒,用浓度为150 mg/L的ATB1浓液浸泡插穗2 h;扦插于泥炭土:珍珠岩(2:1)混合基质,株行距为3 cm×4 cm,扦插深度以顶端留3~4 cm为准,插后及时浇水、防晒、杀毒、灭菌。采用本技术,水松扦插生根率可达39.89%。从繁殖过程中播种苗生长过程探讨水松幼苗生长规律,利用Logistic方程拟合水松播种苗苗高、地径生长节律,相关指数均在0.95以上。水松苗高生长量遵循“S”型规律,地径生长量变化与苗高呈现正相关。   (5)通过宏观和微观方面综合研究,阐述水松濒危特征及生态适应性,揭示其濒危机制。水松濒危是各方面因素综合作用的结果,是时间和空间长期的渐变过程。从现象上看可能是人类活动造成的生境片断化,滥砍滥伐导致水松数量减少,实质上是其演化过程中气候剧烈变化、遗传多样性低下、生境破坏、生态因子胁迫和树种竞争等多因素综合结果。水松濒危原因表明,该物种的保护是一个复杂系统工程,应综合考虑各种因素对其造成的影响,全面系统地开展水松珍稀资源的保护与恢复工作。
其他文献
锂离子电池是人类应对能源危机最重要的手段之一,正极材料作为锂电池重要的组成部分,其性能好坏直接影响电池的各项性能。开发高性能、低成本的新型正极材料一直是锂离子电池的
野大豆是蝶形花科一年生缠绕草本植物,是大豆育种的重要材料,也是国家二级保护植物,具有多荚、抗病虫、抗逆性强等优良性状。本实验对其耐盐性进行研究以筛选出优良的野大豆
鼠尾粟属Sporobolus是禾本科一年生或多年生的草本植物,共包括160多种,广布于全球的热带地区,我国分布有8种,引种者1种。关于鼠尾粟属的系统学位置,一直存在着争议。  为了进一
氢镍电池目前已在空间飞行器上得到广泛应用。与锂离子电池相比,氢镍电池具有高可靠、长寿命和成熟的飞行经验等特性,在未来低轨道大功率空间飞行器上仍有较大的应用需求。