论文部分内容阅读
随着大功率芯片密集化的发展,烧结纳米银焊膏的性能面临着新的挑战,而增强基纳米银焊膏不仅具有银基材料的高导热、导电性能,还能弥补烧结银接头中出现的孔洞、裂纹等非致密化缺点,目前添加增强基成为改善烧结纳米银焊膏性能的研究热点。因此,本文尝试将金刚石作为增强相添加在纳米银焊膏中,金刚石具有较高的热导率、较低的热膨胀系数和优异的机械性能等优点,将金刚石进行改性处理,添加在纳米银焊膏中,制备出性能优异的金刚石/纳米银焊膏材料,能够有效地应用在功率器件互连封装中。本文通过水合肼法制备粒径在60~90 nm的大颗粒纳米银焊膏,同时改进Carey Lea法制备粒径在25~45 nm的小颗粒纳米银焊膏,通过大、小尺寸银颗粒以1:4比例制备复合纳米银焊膏。同时对金刚石颗粒进行化学镀银改性处理,提高了纳米银颗粒与金刚石之间的界面结合能力,再分别按1 wt%、5 wt%和10 wt%份额添加在复合纳米银焊膏中,制备出金刚石/纳米银焊膏。对金刚石/纳米银焊膏进行热重分析,发现其有机成分在350℃时挥发殆尽。通过对金刚石/纳米银焊膏烧结前的颗粒形貌进行TEM透射电镜观察,发现大、小颗粒的银颗粒之间没有发生团聚,分散性较好。利用SEM扫描电镜对烧结后的金刚石/纳米银焊膏进行组织形貌表征,发现金刚石颗粒表面形成了大量的烧结银层,纳米银颗粒之间形成密集的烧结颈,在300℃金刚石表面的纳米银颗粒最多,烧结层的致密性最好。利用SAM超声波显微镜观察了金刚石/纳米银焊膏烧结接头的致密性,发现在5 wt%时烧结银层的孔隙率最低。通过Hot Disk热常数分析仪来测量不同烧结温度下金刚石/纳米银焊膏的热导率和热扩散系数,在烧结温度为350℃时热导率最高为2.643 W/mK,比较不同份额金刚石添加量,发现在5 wt%时热扩散系数最高为36.84 mm~2/s。将5 wt%金刚石/纳米银焊膏、银硅脂、HY500型导热硅脂分别应用于互连LED芯片与PCB基板,在不同烧结温度下测试其界面热阻,发现在50~200℃时,烧结5 wt%金刚石/纳米银焊膏的界面热阻远远低于其他两种,最低为0.4364 K/W,比常温下的热阻降低约40%。