【摘 要】
:
在交通、市政、水工、矿山、军事等诸多领域存在着大量的隧道工程。隧道工程的建设必然伴随着土体的开挖,由于土体对于外界的扰动较为敏感,开挖过程中所引起的地表沉降、围岩变形若是过大,必然会引起地表塌陷、洞室坍塌,从而造成人员生命及财产的损失。通常来说,隧道的施工工法及支护参数主要根据其所处地层的围岩力学参数来确定,但众所周知,围岩作为一种非均匀、非线性、非连续的材料,如何准确高效的获取围岩力学参数成为工
论文部分内容阅读
在交通、市政、水工、矿山、军事等诸多领域存在着大量的隧道工程。隧道工程的建设必然伴随着土体的开挖,由于土体对于外界的扰动较为敏感,开挖过程中所引起的地表沉降、围岩变形若是过大,必然会引起地表塌陷、洞室坍塌,从而造成人员生命及财产的损失。通常来说,隧道的施工工法及支护参数主要根据其所处地层的围岩力学参数来确定,但众所周知,围岩作为一种非均匀、非线性、非连续的材料,如何准确高效的获取围岩力学参数成为工程界亟需解决的难题。本文以正在建设中的大连地铁五号线起虎区间段隧道为依托,提出以差异进化算法理论为基础的DE-BP神经网络反演模型,根据隧道施工现场的位移监测数据反演出隧道所处地层的围岩参数,进而将所得到的参数应用于隧道CRD法不同开挖方式及支护参数的研究中,对于实际工程具有一定的指导意义。本文的主要研究内容如下:(1)收集并整理隧道工程地质、水文条件、施工工艺、施工监测等资料,采用回归分析中的双曲线函数公式对开挖初期隧道拱顶沉降及净空收敛随时间变化曲线进行拟合,对围岩的最终变形量进行预测。(2)运用Abaqus有限元软件建立隧道开挖正演模型,采用正交试验、极差分析、方差分析等方法,分析出土体摩尔-库伦本构参数的敏感性,最终确定将土体的弹性模量Ε、粘聚力c、内摩擦角φ作为本文的反分析待反演参数。(3)分别建立BP神经网络模型及优化后的DE-BP神经网络模型,采用正交试验、均匀划分等方法建立神经网络学习样本并进行网络训练。采用灰度预测中的后验差检验对两种模型的预测能力进行评价,得到DE-BP算法的误差要小于传统的BP算法,说明其具有很好的预测能力。(4)将反演出的围岩力学参数应用于隧道动态开挖模型的建立中,从围岩变形、锚杆轴力、初支应力等角度着重研究隧道CRD法不同开挖步序、锚杆长度、锚杆间距等因素的影响,分析各工况的安全性,为隧道的设计和施工提供指导和依据。
其他文献
Web2.0技术的进步使得在线知识社区成为用户之间生产和分享知识的大规模协作平台。而随着人工智能(Artificial Intelligence,AI)技术的不断发展,在线知识社区正逐渐由人人协作转变为人与机器人协作进行知识生产。然而,虽然当前社区中的机器人已经成为的重要协作主体之一,但对于人机协作的内在影响机制的研究仍缺少足够的重视,此外,当前关于人机协作的研究缺少对应的理论框架作为指导,并且缺
随着科学技术的进步以及生活质量的提升,人们渴望更加方便、快速、有趣地进行人机交互,手部姿态估计和形状估计有望实现无接触的人机交互。随着人工智能的发展和5G技术的商用,利用深度学习估计手部姿态和形状成为可能,大量研究者尝试利用深度图像和彩色图像估计手部姿态与形状,并取得了令人欣喜的成绩。但当前的手部姿态及形状估计方法仍有提升空间,十分有必要对此展开研究。本文的研究工作如下:(1)深度图像自带深度信息
近年来,随着科学技术的迅速发展,人们的生活水平有了很大的提高,但随之也带来了许多环境污染问题。环境中的各种有毒有害气体正在威胁着人们的健康,因此开发一种选择性好、灵敏度高、工作温度低的传感器变得尤为重要。其中尖晶石型(AB2O4)和钙钛矿型(ABO3)两种金属氧化物由于独特的结构成为了当下的研究热点。本文主要包含了NiFe2O4和LaFeO3两种双金属氧化物的制备及其气敏性研究。主要研究内容如下:
语音质量评估技术是语音处理领域重要研究内容之一,它在移动通信、互联网、消费电子、数字娱乐、公共安全等领域具有广泛应用。主观语音质量评估方法通常需要较多的人力与物力资源,且耗时较多,因此客观语音质量评估方法越来越受到人们的青睐。有参考语音的客观质量评估方法需要纯净的原始语音,这在实际中有时难以获得。于是无参考语音的客观质量评估方法逐渐得到重视,特别是近年来基于深度学习的无参考语音质量评估研究已取得重
光纤声传感器以其体积小、抗电磁干扰、频率响应范围宽、适应恶劣环境等特点,在很多领域发挥着重要作用。膜片式非本征Fabry-Perot干涉(EFPI)声传感器以高灵敏度和探针型传感器结构而引起了广泛的研究兴趣。基于正交点(Quadrature point,即Q点)的强度检测方法是EFPI声传感器应用最为广泛的解调技术之一,但强度解调检测方式具有有限的检测动态范围,当检测强声信号时会发生信号失真。此外
基于我国IPO核准制制度背景,本文检验IPO对企业商业信用供给的影响。结果发现:第一,相比IPO前,企业IPO后商业信用供给显著增加;第二,作用机制检验发现,缓解融资约束、增强从供应商处获取商业信用的能力是IPO促进企业商业信用供给增加的两个路径;第三,异质性检验发现,IPO对企业商业信用供给的促进作用主要发生在非国有企业、规模较小的企业及产品市场竞争激烈的行业;第四,进一步检验发现,IPO前商业
显著性检测也被称为显著目标检测,其目的是通过智能计算和理解,将图片或视频中人眼感兴趣的部分分割出来并标记为高亮。由于本任务的结果在一定程度上模拟了人类的注意力机制,可以作为先验信息在许多其他的计算机视觉任务中应用,因而本任务受到了越来越多学者的关注。近年来,得益于深度学习技术的应用,显著性检测任务得到了快速发展。以RGB图像输入的全监督显著性检测任务为基础方向,在各种不同数据场景下的显著性检测细化
一些金属离子(例如铁离子等)对人体健康具有重要影响,少量摄入时对人体有益,若过量则会威胁人体健康,因此,研制简单快速的金属离子检测方式在环境监测和食品安全等领域具有重要意义。传统的金属离子检测方法如原子吸收光谱法等操作复杂,成本高昂,不利于现场实时监测。因此,便携式高灵敏度金属离子检测技术对于人体安全检测的需求至关重要。局域表面等离激元共振(Localized Surface Plasmon Re
深度学习是当前计算机科学的热门研究方向之一,在各种交叉学科领域中有许多重要运用和研究成果。当前,深度学习已经在图像识别及处理方面已经有了接近甚至某些时候超过人脑的学习能力。无论是日常生活中的手机人脸识别、汽车自动驾驶,还是非日常的极小尺度(如细胞图像切割)到极大尺度(卫星遥感)等,深度学习都能够在这些领域中大有作为。深度学习在图像处理方面十分强力,不仅适用于处理真实图像,使还适用于对任何以图像形式
二维纳米材料具有原子薄层的平面结构、可调的带隙范围以及高比表面积等优点,其在电子器件、表面增强拉曼、催化等领域有巨大应用潜力。将二维材料与金属纳米颗粒或纳米线复合能够增强其在功能器件方面的性能。银纳米颗粒(Ag NPs)具有优异的导电性能,且由于纳米尺寸效应,使其具有良好的透光性和弯曲柔韧性。将二维材料与Ag NPs复合常采用两步法,即先用多元醇法制备Ag NPs,再用液相剥离法制备二维材料,随后