论文部分内容阅读
最近几年汽车产销量以及汽车保有量的高速增长,为汽车配件企业提供了一个广阔的汽车售后维修和保养市场。汽车的寿命很大程度上取决于其心脏(发动机)的寿命。对发动机性能和寿命危害最大的是脏和污染,滤清器是避免脏和污染的唯一方法。机油滤清器位于发动机润滑系统中。它的上游是机油泵,下游是发动机中需要润滑的各零部件。机油品质的优劣将直接影响发动机的工作状态以及汽车的正常行驶。因此,使用高品质的机油,对于汽车是至关重要的。机油的温度变化范围很大,一般是从0oC到300oC不等,优质的机油滤清器的滤纸能够在剧烈的温度变化下,在有效过滤杂质的同时还能保证足够的流量。这就要求滤纸有适当、稳定的透气率以及高挺度、高耐破度和高耐溶剂性。机油中最大的危害因素是水。正常的机油含水量应在0.03%以下。当含水量超过0.1%时,机油添加剂(抗氧化剂、清净分散剂等)就会失效,机油的润滑性能变差,粘度下降,轻则导致机油过早变质和机件生锈,重则可能造成发动机抱轴等严重机械事故。因此,滤纸还应对油液体系有良好的疏水亲油性能防止水分的透过对发动机产生的损害。在众多油水分离方法中,聚结分离因分离效率高、处理量大、适用范围广而得到广泛应用。超疏水超亲油的表面使得油水两种液体在此表面上的接触角值相差很大,它可以实现分离油相中乳化水的功能,使得其在发动机滤清器的分离滤芯中得到了有效的利用,分离滤芯表面的润湿性能对油水聚结分离的效果起到了至关重要的作用。植物纤维基材因为其质地轻、成本低、体积小等优点成为汽车滤清器滤芯的主要分离介质,但也正因为如此需要对其进行特别处理才能真正满足使用环境的需要。本课题旨在制备一种可以赋予机油滤纸良好的耐破度、挺度、透气率和耐热性的浸渍乳液的同时,又使得浸渍后滤纸表面具有超疏水/超亲油的特殊润湿性,从而有效的进行油水分离。为此,本文开展了以下几个方面的研究:首先通过阳离子改性法将二乙醇胺与双酚A酚醛环氧树脂中的环氧基团进行开环反应制备成水性环氧树脂乳液。通过对改性剂用量、合成反应温度、中和度等条件的考察,探索了稳定的水性双酚A酚醛环氧树脂乳液的制备工艺。将制备得到的开环率为15%的阳离子水性环氧树脂乳液应用于机油滤纸时,滤纸获得了比其他同类型浸渍乳液更好的耐破度、挺度和透气率等机械性能。通过以上结果分析可以发现双酚A酚醛环氧树脂可作为改性的基础树脂。而后通过苯甲酸和马来酸酐共同改性双酚A酚醛环氧树脂,在引入亲水的羧基基团的同时引入C=C不饱和双键。并在此基础上通过自由基聚合引入含氟单体来合成具有较低表面能的含氟环氧树脂共聚物。通过共聚物涂膜与油水的接触角结果分析,甲基丙烯酸十二氟庚酯(DFMA)因分子结构中含有六个氟碳链使得它可以在降低聚合物的表面能,赋予聚合物表面超疏水性能的同时又不会因为氟碳链太长而疏油,所以作为改性氟单体的最佳选择。将其应用于机油滤纸时滤纸与水的接触角可以达到152°,而油液可以在其表面迅速铺展。这是因为DFMA的但是水滴在滤纸表面产生了较大的接触角滞后,即使是将滤纸反转也不能使水珠掉落。这是因为滤纸纤维本身的微米级粗糙度使得润湿模型属于Wenzel模型。为了进一步提高滤纸的超疏水性能,需要在滤纸本身的微米结构上构建纳米粗糙结构来降低接触角滞后,从而进一步提高油水分离效率。采用St ber溶胶凝胶法,正硅酸乙酯(TEOS)为前驱体,乙醇为溶剂,氨水为催化剂制备亲水的单分散的SiO2-OH种球,然后以甲基三乙氧基硅烷(MTES)为共驱体进行水解反应,在种球表面包覆一层疏水的甲基得到具有超疏水性的SiO2-CH3粒子。通过TEM、SEM和AFM对比了不同老化时间下SiO2-CH3粒子的形貌、涂膜形貌和粗糙度情况,最终得出SiO2-CH3粒子老化时间为5天时拥有最佳的微-纳米双微观粗糙结构。将其与含氟水性环氧树脂乳液共混应用于滤纸上时可以将滤纸的接触角滞后降低在10°以内。同时其滤纸还拥有良好的耐破度、挺度和透气率。对制备的四种水性环氧树脂乳液浸渍滤纸的油水分离性能进行了研究。结果表明油水分离效率是随着分离材料与水的接触角的增大而增大。尤其是对于含氟水性环氧树脂乳液浸渍滤纸和SiO2共混水性环氧树脂乳液浸渍滤纸来说后者较小的接触角滞后也使得乳化水发生碰撞的几率增加从而提高了油水分离的效率。以上结果表明,虽然共混乳液在机械性能方面比阳离子的水性环氧树脂乳液略差,但是其赋予了滤纸超疏水超亲油的特性,提高了滤纸的油水分离效率。