论文部分内容阅读
最近,关于分数阶微积分理论的最新进展和发展方向,特别强调局部分数阶导数和分形导数在纳米流体力学和纳米热动力中的应用。在分形几何,局部分数阶导数和微积分理论被引入,是描述康托集上定义的非可微函数的最佳方法。局部分数阶导数的物理解释可以在所列有关文献中看到。有关不可微的现象,在分形域中,局部分数阶导数大量的研究成果已经报道。例如,讨论分数维空间中Klein–Gordon和Helmholtz方程新的解析解,提出非线性局部分数阶偏微分方程的新计算方法,此外,还报道分形区域上局部分数阶Boussinesq方程的精确行波解、可分离的局部分数阶微分方程、局部分数阶Korteweg-de Vries方程和局部分数阶二维Burgers方程、分形插值函数及其分数阶微积分、分形集中非线性常微分方程的非可微精确解等等。分数阶偏微分方程有线性和非线性之分。对局部分数阶非线性偏微分方程的研究,国内外的研究只是刚刚开始,还有待更加广泛深入的研究,比如,对很多古典的非线性偏微方程,过去是在光滑条件下研究,在实践中,大量的不可微的情况下,必须借助局部分数阶导数,在分形维和康托集上进行研究,建立新模型和分形模型,借助于分数阶复变换及各种数值求解方法和新方法开展研究。第一章介绍了所研究问题的背景和重要意义、问题的研究现状以及本文的主要工作。第二章(1+1)维和(n+1)维非线性局部分数阶Harry-Dym方程的解析解。(1+1)维和(n+1)维非线性局部分数阶Harry-Dym方程(HDE)的新分形模型第一次被推导出来,借助局部分数阶导数(LFD)和局部分数阶简化微分变换法(LFRDTM)耦合分数阶复变得到了上述两个新模型的解析近似解。对(n+1)维变量函数的分数阶复变换进行了推广,并对(n+1)维LFRDTM的定理进行了补充推广。分形HDE的行波解表明,该方法对于求解非线性局部分数阶偏微分方程的近似解是有效而简单的。第三章,我们提出了一种新方法,将局部分数阶杨拉普拉斯变换与Daftardar-Gejji-Jafaris方法耦合的方法即称作为LFYLTDGJM。该方法我们已成功地应用于时间分数阶非线性修正的Korteweg-de-vries(TFNMKDV)方程的解析近似求解。给出的近似解说明了用此新的方法来求解局部分数阶非线性偏微分方程的效率和准确性更高。第四章,建立了康托集上(2+1)维和(2n+1)维局部分数阶非线性生物种群模型(LFNBPM)的六个新的分形模型,并通过局部分数阶导数和局部分数阶简化微分变换法(LFRDTM)耦合多维分数阶复变(MDFCT),得到了这六个模型的解析近似解。对(n+1)维变量函数的分数阶复变换进行了推广,并对(n+1)维LFRDTM的定理进行了补充推广。得出分形LFNBPM的解析解,验证了用该方法求解局部分数阶非线性偏微分方程的近似解是有效和简便的。第五章,求解二维和三维变系数分数阶热类模型。用卡普托(Caputo)意义描述了分数阶导数,使用分数阶幂级数方法(FPSM),得到了许多解析近似解和精确解,包括变系数的二维和三维分数阶热类模型,结果表明,所使用的方法提供了一个非常有效、方便和强大的数学物理中求解许多其他分数阶微分方程的理论工具。第六章,求解变系数的二维和三维分数阶波类模型。分数阶导数用Caputo意义来描述。我们得到了许多关于变系数二维和三维分数阶波类模型的解析近似和精确解。结果表明,FPSM是求解数学物理中许多其他分数阶微分方程的有效、方便和强大的数学工具。第七章,总结了本文的主要研究结果,并对后续的进一步研究进行了展望。