【摘 要】
:
未来移动通信研究的关键挑战之一是如何在无线网络的频谱效率和能量效率之间取得具有吸引力的折衷。多天线技术是现代无线通信的关键技术之一,它以系统的复杂度和成本为代价,获得了更好的误码率性能和更高的数据速率。在众多利用发射机、接收机或两者的多天线的传输原理中,空间调制能够利用天线索引作为传统的幅度相位调制之外的空间维度来传输信息,是一种极富前景的多天线技术。与单输入单输出系统相比,它能以极低的系统复杂度
论文部分内容阅读
未来移动通信研究的关键挑战之一是如何在无线网络的频谱效率和能量效率之间取得具有吸引力的折衷。多天线技术是现代无线通信的关键技术之一,它以系统的复杂度和成本为代价,获得了更好的误码率性能和更高的数据速率。在众多利用发射机、接收机或两者的多天线的传输原理中,空间调制能够利用天线索引作为传统的幅度相位调制之外的空间维度来传输信息,是一种极富前景的多天线技术。与单输入单输出系统相比,它能以极低的系统复杂度,提供更高的数据速率,与其他多天线系统相比有着更低的硬件成本和复杂度。然而由于无线电传输的开放性和广播特性,保密信息容易被非法用户窃听,因此如何确保空间调制系统的安全传输显得至关重要。本文围绕空间调制系统的物理层安全技术展开研究,主要研究内容与创新点如下:(1)在空间调制系统中,人为噪声辅助是保证安全传输的一项关键技术。针对功率受限的发射机,如何合理的分配有用信号和人为噪声信号的功率对提升空间调制系统的安全性能至关重要。首先推导空间调制系统的安全速率,但由于安全速率是一个复杂的函数,无法获得功率分配因子的闭式解。若通过穷尽搜索方法求解出最优的功率分配因子会导致其复杂度偏高,进而提出基于深度学习的功率分配方法。仿真结果表明,基于深度学习的功率分配方案的安全速率性能接近最优的功率分配方法,并且实现复杂度远低于穷尽搜索方法。(2)针对预编码辅助的空间调制系统中的天线选择问题,为了提高安全速率性能,首先分析了最大化安全速率的天线选择算法,但是其复杂度较高,随后推导其安全速率的近似表达式,进而提出了低信噪比下最大化安全速率方法和高信噪比下最大化安全速率,此两种方法分别在低信噪比和高信噪比条件下获得了逼近最优方法的安全速率。此外根据空间调制符号的特殊形式,提出了在全局信噪比下最大化安全速率的方法。仿真结果表明,所提的三种天线选择方法不仅能大幅度降低天线选择的复杂度,而且获得了逼近最优解的安全速率性能。
其他文献
静电负刚度谐振式加速度计(Electrostatic Frequency Modulation Accelerometer,EFMA)是一种新型微机电(Micro-Electro-Mechanical System,MEMS)加速度计,它集主流的谐振式加速度计和电容式加速度计两种加速度计的优势于一身,具有精度高、长期稳定性好、温度特性好、噪声低的特点,有非常好的应用前景。然而,由于静电刚度对应的极
随着人类开始迈入太空时代,太空中的运输成为人们日益关注的热点问题。局部空间电梯作为一种新兴的太空运输技术,近年来受到了众多学者的广泛关注。最近,李刚强等提出了环形局部空间电梯概念,其运输效率高、成本低廉。然而,环形局部空间电梯整体尺寸较大,运动时间较长,并受到科氏力的作用,电梯在运动过程中极易产生大范围运动并可能发生接触碰撞。因此,有必要对环形局部空间电梯的动力学行为展开研究。由于系绳相对整体结构
膜蒸馏技术可广泛适用于海水淡化、高浓度苦咸水的淡化、工业废水处理等应用中。PVDF静电纺丝膜在膜蒸馏过程中会产生膜污染和膜孔润湿,导致渗透通量下降。Janus膜是一种新兴的膜材料,膜两侧表面上不同的多级结构使得其具有相反的润湿性能。在面对恶劣的使用环境下,Janus膜仍然可以保持稳定的膜蒸馏性能,可利用低品位的热源进行高浓度苦咸水和海水的淡化。现有的板框式膜组件存在热损失大、产水效率低、易被污染的
外形和尺寸是人类感知世界最基本的参数,如何能准确而快速地获得物体的三维轮廓数据一直是当前研究的热点和难点。条纹投影作为一种主动式三维测量技术,因其高效、快速和非接触等优点被广泛应用在工业检测、生物医学和工程制造等科学研究和工程实践领域中。然而,随着各领域的不断升级和发展,传统的单面三维信息测量已经不能满足日益增长的应用需求,因此,如何在传统单面测量的基础上,更进一步地获得物体完整的外形轮廓对扩大条
电磁脉冲广泛存在与自然界之中,并且于工业、农业、医学和军事等方面均有很多应用。电磁脉冲测量技术是了解并利用电磁脉冲的基本前提,国内数家科研机构和大学都做了一些研究,如西北核技术研究所、中国工程物理研究院、军械工程学院、解放军理工大学等;国外如美国计量技术和标准化研究所、韩国计量院等也都有相应的研究。电磁脉冲是一种瞬态高强度信号,其采集系统相应地应该具有宽频带、快响应时间和宽动态范围等特点,本文针对
防空反导能力是舰艇安全的保障。舰炮武器作为防空反导的重要手段,提高其对机动目标的命中毁伤概率是目前世界各国舰炮弹药的重要研究课题。从国内外研究进展来看,基于舰载雷达探测的指令制导体制是目前研制舰载防空反导制导炮弹可行的技术方案。本文针对雷达探测体制下指令制导炮弹的制导控制系统设计问题,开展了理论分析、仿真验证等研究工作。首先分析了各弹道段上制导炮弹的受力特性,建立了其运动过程的数学模型,通过数值计
镁合金是最轻的结构金属材料,拥有较好的力学性能,较高的比刚比强度,良好的减震减噪性、导电导热性和优良的生物可相容性等优点,以及可降解利于保护环境等优点在航空航天、汽车以及生物医学上应用广泛。镁是密排六方结构,各向异性大,加工变形困难并且脆性大,导致镁及其合金的大规模应用受到极大的限制,无法满足工业上对结构材料大规模应用的要求。因此,研究镁及其合金的力学性能就显得尤为重要。本论文利用基于密度泛函理论
激光等离子体作为激光与物质相互作用的产物,有巨大的应用潜能,而不同气压环境会对激光等离子体的性质产生很大影响。因此,研究不同气压下激光等离子体的参数变化,有助于更加了解激光等离子体的作用机制,对激光等离子体技术的应用具有重要意义。本文针对气压环境对激光等离子体的影响机理,建立了基于双波长的马赫-曾德尔瞬态干涉装置,研究了不同延迟时间和不同气压下激光等离子体电子密度变化特性。首先建立了基于双波长的马
随着毫米波(MMW)和太赫兹(THz)波系统的快速发展,高频带天线引起了越来越多的研究兴趣。基于高次模的高增益微带天线具有电大性能和高增益的特点,可以很好的克服毫米波和太赫兹器件的制造精度要求过高的困难,以及在该频段高传播损耗的问题。本文研究利用具有高增益的线极化、圆极化以及波束倾斜的高次模微带天线,主要内容如下:第一,研究基于高次模的线极化高增益微带天线设计。结合差分馈电和电流干扰技术,使工作在
轨道角动量(Orbital Angular Momentum,OAM)其特有的螺旋状相位分布和模态正交性,为解决通信方面日益紧张的频谱资源以及成像领域分辨率等问题提供了一种新思路,自从提出后便受到广泛的关注。通过调研发现,对OAM天线的研究主要集中在平面结构上,对于共形结构的研究还不够深入。本论文围绕轨道角动量的产生及其应用,主要研究内容包括:首先,提出了一种用以生成3模态OAM波的结合Butle