【摘 要】
:
近年来,人工智能发展迅速,成为国家重点关注和建设的领域。人工神经网络作为一种模仿动物神经网络的技术,能促进人工智能行业快速发展。究其本质来说,人工神经网络是一种动力系统,本文以几类具有时滞的动力系统为研究课题,基于Lyapunov理论,着重研究了时滞神经网络的稳定性与耗散性、马尔科夫复杂网络的同步性与控制器设计、时滞复杂网络的指数同步性与控制器设计、网络攻击下的多智能体的一致性与控制器设计。具体研
论文部分内容阅读
近年来,人工智能发展迅速,成为国家重点关注和建设的领域。人工神经网络作为一种模仿动物神经网络的技术,能促进人工智能行业快速发展。究其本质来说,人工神经网络是一种动力系统,本文以几类具有时滞的动力系统为研究课题,基于Lyapunov理论,着重研究了时滞神经网络的稳定性与耗散性、马尔科夫复杂网络的同步性与控制器设计、时滞复杂网络的指数同步性与控制器设计、网络攻击下的多智能体的一致性与控制器设计。具体研究内容总结如下:1.研究了一类具有混合时滞的广义神经网络的稳定性问题。通过构造新颖的含一些自由项的Lyapunov--Krasovskii泛函(Lyapunov--Krasovskii functional,LKF),利用稳定性理论和不等式技巧,建立了系统的指数稳定性和严格耗散性准则。仿真实例表明所给结论的有效性和优越性。2.研究了一类具有非脆弱采样控制的复杂网络的指数同步性问题。通过设计包含控制增益波动、增益波动不确定性以及数据传输过程中的时滞的控制器,与构造一个新的LKF以允许其拥有更多的自由矩阵,利用稳定性分析理论,建立了非脆性采样反馈控制器下时滞复杂网络的指数同步准则,得到了采样间隔的更优上界估计。最后,通过仿真实例验证了所给结论的有效性和所提方法的优越性。3.研究了一类具有输入模态时滞和马尔可夫有向通信的复杂网络的同步性问题。通过建立包含马尔科夫切换的分布式动态事件触发控制器,与构造模态有关的LKF处理控制器中含马尔科夫切换的时变时滞项,利用稳定性分析理论,建立了包含马尔可夫切换的分布式动态事件触发控制下的马尔可夫复杂网络的同步准则。最后,数值仿真表明了所给结论的有效性。4.研究了一类具有冗余信号和通信干扰的多智能体系统的安全一致性问题。通过设计一种具有脉冲信号的灵活广义的分布式动态事件触发控制器来实现减少冗余触发、灵活地调整触发频率,甚至在特殊情况下替换采样方案,利用稳定性分析理论,建立了具有冗余信号和通信干扰的多智能体系统的安全一致性准则。带有仿真的数值实例说明了所给结论和控制协议的有效性。
其他文献
基于电磁波与金属-介质复合微结构相互作用的等离子体共振传感器是一种传感性能优越、体积小、易集成的传感器件,它常表现出对环境湿度或溶液折射率、生物分子类别和浓度、入射电磁波倾斜角度的灵敏响应,在化学、生物、海洋产业领域都有潜在的应用市场。然而,等离子体共振传感器距离实际应用还存在很多问题,例如:等离子体共振传感器的制备成本高、简单结构的传感器的传感性能较低。针对以上问题,本论文首先研究低成本高输出的
随着科技的日益快速发展,传感器作为信息获取的源头,其作用和地位愈加重要。石英晶体微天平(Quartz crystal microbalance,QCM)作为一类十分重要的质量传感器,目前,在很多领域获得了广泛应用。本文以QCM传感器质量灵敏度的关键技术为研究对象,通过深入研究QCM的传感机理,并结合有限元仿真技术,揭示了决定QCM传感器质量灵敏度的关键因素,提出了通过优化电极结构设计来提高QCM传
随着世界各国经济和科学技术的飞跃发展,移动机器人的应用领域越来越广泛,其应用场景也从室内环境拓展到了各种复杂环境,如野外、水下、空中甚至外太空等。目前,对于复杂环境的机器人系统仍存在许多尚待研究的课题。本文针对环境全局信息已知、地面崎岖不平的复杂环境条件下的轮式机器人的路径规划和轨迹跟踪控制技术进行研究。本文建立了崎岖地面的环境模型,针对曲面路径规划算法的时间复杂度改进问题,提出了多尺度技术。针对
机器学习是大数据处理的常用工具之一。然而,依靠单个计算节点的计算能力处理大规模的数据集,不能在可接受的时间范围内将模型训练到满意的精度。通常采用多个计算节点来实现数据并行训练。每个计算节点迭代式地处理部分数据集,每次迭代都要通过网络与其他计算节点同步模型的信息,保证训练的正确性。由于模型规模通常在数百兆至数千兆字节之间,每个计算节点每次迭代都要交互等同于模型大小的数据量,例如模型的参数或者梯度,使
近几年来,忆阻器作为一种新兴的电子元件在非易失存储和神经仿生方面都有重要的应用。忆阻器是具有电容结构,能够被多次写入和非破坏性读取的二端器件,它是下一代存储器的有力竞争者。除了作为存储器件,忆阻器作为一种具有可调整状态的二端器件,与生物突触具有高度的相似性,基于忆阻器的大规模神经网络有望实现类脑计算系统,在生物神经仿生领域也具有很高的研究价值。神经网络已经具有几十年的研究历史,近年来由于深度神经网
高灵敏、快速和低成本的生物标志物检测在重大疾病的早期诊断中具有重要意义。但现有的光学传感器尚不能达到疾病早期诊断的要求,主要存在三个方面的瓶颈问题。(1)光和物质相互作用弱,难以实现高灵敏传感;(2)传感器制备重复性差,难以实现高灵敏的一次性使用;(3)步骤繁琐,难以实现快速检测。因此,如何同时实现一次性、高灵敏和快速的生化传感成为光学传感领域亟待解决的关键问题。针对上述瓶颈问题,本论文利用光微流
随着自动化技术的发展,工业机器人以其高效、低成本、重复性好等优点,在汽车制造、电子电气和航空航天等现代工业生产中得到了广泛的应用。在这些应用中,运动精度作为关键的性能指标,是工业机器人完成操作任务的重要保证。然而,由于工业机器人结构中制造误差、关节间隙、弹性变形等不确定性因素的影响,末端执行器实际的运动远未达到高精度、高可靠的性能要求。因此,精确地分析和评估工业机器人的运动精度可靠性,是确保其在工
装备制造业是一个国家工业化发展程度的重要标志。数控机床,作为装备制造业的“工作母机”,是不可缺少的“生产工具”。五轴数控机床作为高端机床的代表,由于具备两个旋转轴,拥有更好的加工柔性、更高的加工效率等优点,但同时也引入了更多的误差影响,刀具运动也更加复杂。研究五轴机床误差的作用机理,并进行检测与补偿,对提高五轴机床的加工精度具有十分重要的意义。本文以五轴联动数控机床为研究对象,考虑机床精度在几何误
自动目标识别(Automatic Target Recognition,ATR)是基于传感器获取的数据识别目标的技术,能够通过模式识别、机器学习算法实现目标的类别或属性的判定,是提升传感器信息感知能力、实现传感器技术应用的关键技术之一,具有重要的研究意义。随着传感器技术的快速发展和广泛应用,海量数据被积累,而且数据量仍在不断增加。日益增多的数据必然会对目标识别能力的提升和应用范围的拓展起到积极作用