论文部分内容阅读
对于非全封闭站台门系统的地铁,列车高速行驶产生的活塞风直接影响地铁区间隧道、车站站台、站厅各区域空气流动特性及其环境特性。如果能通过优化地铁区间隧道内活塞风井的设置模式,在列车驶入车站时,将隧道内废热(气)在隧道中尽可能通过通风竖井排走;在列车驶离车站时,将室外空气尽可能通过地铁车站地面出入口、人行通道、站厅、站台的路径吸入并分配到各个站内区域,就有可能达到有效利用活塞效应减少地铁通风空调系统能耗的目的。为此,本研究以有效利用地铁活塞效应改善地铁车站空气质量并减少地铁空调通风系统能耗为设计理念,以北京非全封闭站台门地铁车站为研究对象,结合计算流体力学软件动网格模型与组分运输模型的数值计算方法和现场实测方法,开展了关于地铁车站区间隧道活塞风井设置模式对地铁系统空气流动及环境特性的影响工作。定量分析了活塞风井设置模式对地铁车站有效利用地铁活塞效应改善其各区域空气流动与质交换的影响规律;并构建了相应基于地铁活塞效应下,地铁车站通风及空气质量的评价指标体系(活塞风井排风率、地面出入口进风率、空气稀释率、等价新风换气次数)。研究结果表明:(1)应用动网格模型和组分运输模型可分析地铁活塞风的流动特性以及与地铁车站空气的质交换状况;(2)在地铁区间隧道的车站站台进站端设置风井的单活塞风井设置模式,在一个发车间隔内(250s),可从地铁车站地面出入口引入室外空气5126m3、占总引入风量的52%,是双活塞风井模式的2倍;(3)单活塞风井设置模式,不仅占用土地资源少,而且利用地铁活塞效应从地铁车站地面出入口引入的室外空气,可在车站通道、站厅、站台等区域分别产生29.4次/h、32.0次/h、7.3次/h的等价新风换气次数,稀释了相应区域空气CO2浓度。研究结果可为地铁活塞效应有效利用、地铁通风竖井节能优化设计提供方法参考。