用户体验质量分析(QoE)在分组丢失无线网络上的视频流中

来源 :中国矿业大学 | 被引量 : 0次 | 上传用户:curarchy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来无线网络成为各行业信息化建设所采取的必要网络架构、同时、随着网络带宽的增加、多媒体视频业务成为网络中传输的主要业务类型之一。因此、在无线网络视频传输中保障用户的QoE成为无线网络研究中的重要课题。首先、本文利用主观评估的单刺激绝对类别评级(ACR)技术评估了分组丢失、时间变化和传输分组大小对无线局域网WLAN中传输的视频流质量的影响。研究利用Linux的NetEm平台进行具有分组丢失特性的WLAN中的视频传输仿真、仿真输出视频集由20名选择的观察者进行评级打分、并采用MOS方法对评级结果进行分析、结果表明对于内容变化频率不同的视频,存在分组丢失阈值百分比PLTP的差异问题。其次、本文基于上述实验所获得的分组丢失阈值百分比(PLTP)、提出了一种选择性重传算法、该算法可以集成到客户端计算机的误差恢复系统中、以减少延迟并提高分组丢失网络中的带宽效率。本文工作的主要贡献还包括提高了传输数据包大小和时间变化对用户QoE影响关系的认知、可以为设计WLAN中视频流传输的信道编码算法时提供参考。由于智能手机、笔记本电脑和其他用户设备的增加、视频传输成为无线网络传输中主要业务类型之一。然而、视频传输存在更高的丢包率与误码率。这是因为无线网络只提供尽力而为的连接、也就是说、它不能保证延迟抖动、丢包和带宽可用性。因此、在无线网络视频传输中保障用户的QoE成为无线网络研究中的重要课题。无线视频流已经取得了一些成就、例如视频压缩标准(MPEG Ⅱ和H.264)、它可以获得令人印象深刻的效率来提高良好的QoE。但是、由于网络依赖性损伤、最终用户可能仍会经历一定程度的退化。因此、无线网络中的视频传输会严重降低用户QoE。许多研究人员已经提出了减轻VoIP和视频中数据包丢失的方法、他们主要提出交错、空间冗余和重传技术、但不幸的是、在大多数情况下、这些恢复技术会增加抖动和消耗带宽。因此、需要知道在视频质量变得对观看者来说难以忍受之前可能丢失的分组的百分比、以避免恢复对视频质量没有影响的分组。这有助于防止延迟抖动和可避免的带宽消耗。数据包丢失网络中影响用户QoE的另外一个因素是视频的时间特性。时间方面/变化是视频帧间差异、指随时间变化的传输视频中帧间的变化率(颜色或移动)。具有轻微帧间差异的视频被认为是低时间变化、而具有更多时间变化的视频是高时间变化。一个序列随时间变化的时间信息(TI),即视频元素的动态性可以表示为:Mn(i,j)= Fn(i,j)-Fn-1(i,j)(1-1)Tln =stdSpace[Mn(i,j)](1-2)TIscene=maxtime(TIn)(1-3)其中,Mn像素平面是由从第Fn帧的亮度分量中移除帧Fn-1的亮度分量引起的。而TIn帧的TI级是Mn.的标准差,空间信息(SI)是视频序列元素的复杂性,可以表示为:SIn =stdpspace[Sobel(Fn)](1-4)SIscene =maxtime(SIn)(1-5)视频编码在空间和时间上都应用压缩、并且当视频要通过分组丢失网络实时传输时、例如、在无线局域网中、低编码比特率通常通过对视频信号的时间变化进行下采样来减少每秒帧数(fps)来实现。因此、为了提高WLAN中压缩算法的效率、研究用户对具有不同时间变化的视频的质量感知是很重要的。为了评估分组丢失下传输视频中时间级别的影响、我们选择了三个具有不同帧变化率的参考视频数据集通过再模拟的无线网络中进行传输并对接收的视频进行评价、以得出在有数据包丢失的无线网络中、用户的QoE取决于视频的时间变化。包丢失伪影影响了所有的研究视频;然而、与其他两种变化(即中间时间变化(ITV)和高时间变化(HTV))相比、低时间变化(LTV)视频显示出最佳的MOS。本文的分析结果表明:视频帧的时间变化越小、视频质量越好。本项目采用UDP协议、因为其速度优于TCP协议、并且它不会引入由于建立连接而导致的时延。与TCP相反,UDP是一种无连接协议,它以“即发即忘”的方式传输数据包而无需任何重传,因此非常适合实时应用。在TCP中,如果丢包并且下一个数据包成功传输,内核将“保留”该成功数据包,直到重新传输先前丢失的数据包为止,因此,TCP的重传和速率控制机制都己结束结束延迟和其他不适合流式传输的功能。视频流的简单思想是在流媒体服务器处将压缩视频分成数据包、然后连续传输这些数据包、这使得流媒体客户端能够在数据包传送时解码和回放视频。在这项工作中、这些数据包在流服务器的传输层分割并通过eth0输出;这是由Linux路由器的eth1接收的、它通过随机丢弃一定比例的数据包(研究中使用的丢包百分比是:0%、0.2%、0.4%、0.6%、0.8%、2.0%、4.0%、6.0%、8.0%和 10%、其中0%代表源视频)来模拟WLAN。然后、路由器通过其eth0输出剩余的数据包、并由流客户端接收。图3-3说明了这个过程。为了模拟WLAN,本文使用了一个名为NETEM的基于Linux的流量整形工具。流量整形是一种计算机网络流量管理技术,它延迟,丢弃或重新排序某些或所有数据包,使其满足指定的流量要求或满足某些指定级别的性能QoS。它也称为数据包整形。一些可用于流量整形的应用程序是:NetEm,NIST Net和DummyNet。在WLAN仿真中使用流量整形来研究分组丢失,延迟,分组损坏和重复对数据传递的影响。在本文中,网络仿真器(NetEm)用于模拟WLAN的正常动态行为,因为它报告了其他仿真器的准确性。它是Linux网络仿真器模块,是标准Linux内核版本2.6.7及更高版本的一部分]。其功能还包括通过模拟广域网的属性来测试协议。在这个项目中使用了三个计算机系统,即流媒体服务器和流媒体客户端,它们都在Windows操作系统和NETEM上运行,后者在Linux内核上运行。要为WLAN仿真准备流量整形器,首先通过在Linux内核上运行以下命令来启用NETEM功能:$ sudo capt-get install iproute2//安装 iproute2包安装iproute2后,必须启用内核IP转发。内核IP转发是Linux内核的一个特性,它是路由的同义词。当用户想要使他们的计算机充当路由器,网关,DMZ,VPN路由器或互联网连接共享时,它是必需的。它使Linux能够将从其接口 1(eth1)进入的数据包转发到其接口 0(eth0),最后转发到流客户端的目标接口 0(eth0)(图3-3)。$ sudo sysctl net.ipv4.ip_forward//检查IP转发状态此命令用于检查是否已启用或禁用IP转发。Ip_forward = 0表示禁用,而ip_forward=1表示启用。默认情况下禁用IP转发,并使用以下命令启用它:$ sudo sysctl net.ipv4.ip_forward = 1//启用IP转发$ sudo nano/etc/sysctl.conf//永久配置IP转发永久启用IP转发后,数据包丢弃如下:#tc qdisc add dev eth0 root netem loss 0.2%//为eth0添加规则如果之前没有规则,则首先使用上面的命令将规则添加到接口 eth0。此命令用于建立规则。#tc qdisc change eth0 root netem loss 0.2//丢弃0.2%的数据包#tc qdisc change eth0 root netem loss 2.0%//丢弃2%的数据包#tc qdisc change eth0 root netem loss 4.0%//丢弃4%的数据包#tc qdisc change eth0 root netem loss 6.0%//丢弃6%的数据包#tc qdisc change eth0 root netem loss 10%//丢弃10%的数据包上述命令会导致某些指定的数据包丢失,并且每个连续的概率取决于最后一个的四分之一。在开始流式处理之前,发送了一条ICMP消息,以确保系统中没有先前配置的数据包丢失。#tc qdisc del dev eth0 root//删除规则以添加新规则#tc-p qdisc ls dev eth0//显示接口上的当前规则(eth0)此外,作为逻辑测量点的Wireshark v1.12.2安装在Linux路由器系统中,用于测量通过路由器系统的eth1进入的数据包的数量,并将其与通过出口接口 eth0离开的数量进行比较。这有助于监控丢包合规性。eth1上安装了一个100MB/s的LAN适配器,而eth0是NETEM计算机的内置Broadcom NetXtreme千兆以太网适配器1000MB/S。在流媒体服务器上,安装了 DrTCP独立软件,将数据包的最大传输单元(MTU)调整为512,1024和1500字节,下面的命令用于确定更改:netsh interface ipv4 show subinterface//列出所有网络接口netsh interface ipv4 set subinterface“LAN”mtu=1024 store=persistent netsh int ip show int//显示配置的Max Transmission Unit(MTU)值为了能够将视频从流媒体服务器流式传输到流媒体客户端,VLC软件安装在两台计算机上。VLC的配置如图3-7至图3-10所示,本研究中使用的VLC流服务器的各种参数如表3-3所示。本文提供了与观众认为的丢包相关的一些相关问题(如下所列)的答案:》观察员认为数据包丢失对流视频有何影响?》在视频质量变得无法容忍之前,可以丢失多少百分比的数据包?》视频时态变化对数据包丢失网络中的QoE有何影响?》传输数据包大小是否会影响蒸汽视频质量?首先、本文利用主观评估的单刺激绝对类别评级(ACR)技术评估了分组丢失、时间变化和传输分组大小对无线局域网WLAN中传输的视频流质量的影响。为了研究无线连接中视频流中的分组丢失、时间变化和传输分组大小的影响,分辨率为CIF(352X288)的三个视频以及低、中、高的时间变化;使用NETEM作为WLAN仿真器流式传输512字节、1024字节和1500字节的数据包大小。仿真输出视频集由20名选择的观察者进行评级打分、并采用MOS方法对评级结果进行分析。两种统计方法:均值和方差用于分析通过问卷收集的意见的结果(附录B)。本文使用这些细节来计算针对数据包丢失和传输数据包大小的平均意见得分(MOS)。其中两名观察员是技术工人,其余十八名是学生。其中10人为男性、另外10人为女性、均在23-35岁之间。观察者属于三个种族群体(黑人,蒙古人和高加索人),他们被放置在距离电脑屏幕60-100厘米的观察距离内。观察者都没有先前的主观视频质量评估经验,也没有视频信号处理方面的专业知识。使用了一台笔记本电脑,每位观众轮流对已处理视频的质量进行评级。共播放了20个没有音轨的视频,观看条件符合ITU-R Rec BT.5005推荐。MacBook Laptop Pro LED-背光光面显示屏使用了以下功能:分辨率:1280x800,尺寸:13.3英寸,宽高比:16:10和图形:Intel HD Graphics 3000 512MB。结果表明对于内容变化频率不同的视频、存在分组丢失阈值百分比PLTP的差异问题。如表5-1中记录的那样、视频丢失率会随着丢包率的增加而降低。由于MOS平均范围在4.0到2.5之间、观察者尤其对于新闻和瀑布视频而言,视频丢失0%到0.6%的视频损失并不明显、尽管如此、除了新闻(低时间变化)视频、2%的数据包丢失低于“公平”视频类型、因此0.8%是足球和瀑布的丢包阈值点(PLTP)、而新闻视频的PLTP是4%。10%的数据包丢失非常糟糕、所有视频的QoE都非常烦人、如图5-1所示、它给出了图5-0的放大图、以便更清楚地观察不同数据包丢失的影响。QoE的丢包率为0%、2%和10%。为了研究时间变化的重要性、在该实验中使用了三类视频媒体:分组大小为1024字节的低、中和高动态视频。这背后的目的是使用主观视频质量评估(S-VQA)研究时间冗余对分组丢失伪像的质量矩阵的影响。视频的特征如表3-1所示。图5-5显示观察者所感知的QoE取决于视频的时间变化。网络工件影响了所有研究的视频;尽管如此、与其他两种变化(即ITV和HTV)相比、低时间变化(LTV)视频显示出最佳MOS。为了研究分组大小对流视频质量的影响,在三个不同的视频上使用了512个、1024个和1500个字节的3个传输分组大小。图5-3、5-4和5-5分别是瀑布、足球和新闻视频的数据包大小分析。结果清楚地表明、在分组丢失的无线网络中、与其他两种大小相比、传输分组大小1500提供了更好的视频质量、如图4.1-4.8所示。这意味着数据包大小越大、MOS越好。因此、若有任何损失、较大的数据包大小仍将保持视频质量高于较小的大小。.原因是因为处理后的视频帧的质量取决于对来自I帧的P帧和B帧的有效解码,并且I帧中的分组丢失可能导致误差传播,因此如果视频序列是小包、这意味着I帧更多地处理分组丢失、这将导致错误的广泛传播、从而导致较差的视频质量。图5-7显示了如果数据包大小很小、由于数据包丢失导致的损坏的I帧如何影响整个GOP。无论时间变化和分组大小如何、所研究的视频中存在与分组丢失伪像相关的相关性。在所有考虑的情况下、分组丢失的增加导致MOS的减少、因此导致视频质量低的分组丢失率低于20%。如图5-8所示、高时间变化的足球视频具有最低的方差、在10%的分组丢失时趋于0;这种意见的融合意味着大多数观察者的感知评级都认为视频质量令人讨厌。这是因为视频是高动作的、因此容易使损伤变得明显。相反、新闻视频(低时间变化)的意见分歧不仅在10%的数据包丢失、而且从0.4%向上。这表明观察者由于其低时间变化而检测到视频中的任何损伤是多么困难。通常、我们对整个数据包丢弃的方差水平低于1、这可能意味着观察者对视频有一定的相互感知感。对于所有传输分组大小和视频类型、0%和0.2%分组丢失的差异是低的、而对于至少一种视频类型、分组丢弃的差异为0.4%至10%(方差>0.6)。这是因为数据包丢失效应尚不明显、但随着数据包丢失增加了意见分歧。其次、本文模拟了无线局域连接、以研究数据包丢失、时间变化和数据包大小对用户体验质量的影响。研究发现、对于慢动作视频、在QoE变得烦人之前可以容忍的最大丢包阈值是4%的数据包丢失、而对于高和中等运动视频;丢包阈值为2%。本文基于上述分析所获得的分组丢失阈值百分比(PLTP)、提出了一种选择性重传算法、该算法可以集成到客户端计算机的误差恢复系统中,以减少延迟并提高分组丢失网络中的带宽效率。更重要的是,正如已经证明的那样、时间变化(即视频帧中随时间发生的差异)也会影响分组丢失连接中的视频质量。低时间视频的MOS被评为最佳、其次是中间时间视频(ITV)、然后是高时间视频(HTV)。第三,本文提出的研究问题的答案如下:研究问题1:根据分析结果、本文发现数据包丢失对观察者所感知的视频质量有直接的影响。数据包丢失百分比的增加会导致高视频质量损害。此外、方差分析表明观察者的意见趋同、随着分组丢失百分比的增加、体验质量下降。研究问题2:此外、工作的最大成就之一是给出了一种重传算法、算法中用于慢动作视频的数据包丢失阈值百分比(PLTP)计算为4%、而快速运动视频的数据丢失阈值百分比(PLTP)为0.8%,可以有效地集成到流式客户端错误恢复系统中。该算法提供智能重传,因为低于PLTP的分组丢失将被忽略,因为它们对用户的QoE没有可察觉的影响、因此最小化了由于用于纠错的往返时间(RTT)的带宽消耗和延迟。研究问题3:为了回答第三个研究问题、分组大小为1024字节的三个不同时间变化(低,中和高)的视频受到分组丢失条件的影响。图5-6显示低时间变化(LTV)视频具有最佳MOS,其次是中间时间变化(LTV)、最后是高时间变化(HTV)。因此、在丢包情况下、视频帧的时间变化越小,QoE越好。研究问题4:同样,发现传输包大小对流视频有影响。对于所有视频类型、大数据包大小(例如1500字节)具有比较小数据包大小(512字节)更好的MOS等级。对此的最佳解释是大的传输分组大小比小分组大小更有效地防止错误传播。本论文的第6部分详细考虑了这种解释。本论文的结果可以用于电信行业、为服务提供商提供面向不同网络伪像确定其视频集工作边界的能力并、且还可以通过降低时间分辨率用于编码器优化、以便实现良好的视频质量。此外、结果还可以激发研究人员在设计用于通过分组丢失网络的视频流的联合源-信道编码算法时考虑时间变化和传输分组大小。最后提出了以下潜在研究方向、通过进一步的深入研究能够在未来完善本文的研究内容:只有当被忽略的丢包不是Ⅰ帧的一部分时,所提出的(PLTP)重传算法才能有效工作(因为Ⅰ帧分组中的少量丢失会导致错误的广泛传播)。同时、因为分组丢失不是随机的、而是依赖于先前的损失,因此需要识别和保护Ⅰ帧携带向量并对其进行优先级排序。因此、未来的工作将是CODEC优化、从而增强Ⅰ帧到客户端的有效传输。此外、将所提出的算法嵌入到客户端计算机错误恢复系统中以进行测试将是未来一项有趣的工作。最后、这项工作中使用的视频数据集是无音频的。研究数据包丢失对视听同步的影响及其对用户体验质量的影响将是未来需要考虑的一个有趣领域。
其他文献
1研究背景我国淡水资源短缺,人均占有量不足世界人均占有量的三分之一。为了解决水资源匮乏问题,我国高度重视海水淡化科技研发和海水资源利用。近年来,我国海水淡化工程总体规模稳步增长,截至2017年年底,全国己建成海水淡化工程136个,产水规模118.91万吨/天。添加海水淡化水处理剂是影响淡化水卫生安全的因素之一,未来经过处理后的海水淡化水有望直接接入市政管网供饮用。因此,开展海水淡化水卫生安全性评价
笔者于2019年做为一名汉语教师志愿者,赴韩国全罗南道康津高中进行了为期一年的汉语教学工作。针对高三年级学生学习兴趣不高,动机不强的现状,基于学习动机理论并结合二语习得的相关理论和他人学习动机提升教学策略的研究成果,用行动研究的方法,将高三年级的4个班级分为实验组和对照组,在实验组展开提升汉语学习动机的教学实验。第一步,在综合借鉴现有成熟学习动机问卷和对研究对象学习现状观察分析的基础上,确定问卷的
基于非相对论量子色动力学(NRQCD)因子化定理,论文研究了底夸克偶素辐射衰变到粲夸克偶素,伴随一个光子的过程。根据NRQCD因子化定理,论文将该过程的衰变宽度(振幅)因子化成一系列短程系数和长程矩阵元的乘积。其中短距离系数可以按照强相互作用的耦合常数as展开来进行微扰计算,而长程矩阵元是非微扰的,这些不同的矩阵元又是按照重夸克偶素里面正反重夸克的典型速度v来展开(其中对于粲偶素v2~0.3,底夸
近年来,随着电子产业爆炸式发展,人们对大容量,高密度的存储器的需求急剧增加.为了实现超高密度磁存储,要求存储介质的晶粒尺寸越小越好,然而尺寸过小就会引起超顺磁效应,造成信号的丢失.L1_0-FePt(Face Centered Tetragonal,FCT)硬磁合金,拥有高的单轴磁晶各向异性能,较小的超顺磁极限尺寸(3 nm),是制作新一代热辅助垂直磁记录介质、交换耦合复合磁体以及高矫顽力磁性探针
新型钢丝网架混凝土房屋结构是一种集保温、隔热、承重于一体的节能型组合结构,在该结构中,夹芯钢丝网架混凝土墙作为主要承重构件,嵌入冷弯薄壁方钢管,再与混凝土构造柱和圈梁浇筑为整体。与传统砌体结构相比,其结构整体性能更好,抗震性能更优,且建筑耗能更低,自重较轻,成本经济,尤其适用于多层住宅建筑,具有广阔的发展空间。本文对该新型组合结构的抗震性能进行了研究,具体过程包括:对一个缩尺比例为1:3的三层整体
写作作为英语学习技能的重要输出手段之一,一直备受国内外学者与广大教育研究领域专家们的关注。《普通高中英语课程标准(2017年版)》中指出,学生要做到“能够分析不同语篇类型的结构特征和语言特点,并且以口头或者书面的形式陈述事件、传递信息、表达观点和态度。”英语写作技能体现学生的综合语言运用能力,也更够突出学生的语言综合素养。鉴于目前我国高中生英语教学中普遍存在的若干问题,如何有效地解决当前现存的问题
学位
定向增发是指上市公司向符合条件的少数特定投资者非公开发行股份的行为,是上市公司进行再融资的重要途径。根据证监会2011年修订的《上市公司非公开发行股票实施细则》,定价
微光学的研究尺度在微米以及亚微米级,也称为微小光学。根据光传播方式的不同,微光学器件可以分为衍射微光学器件和折射微光学器件。二元光学器件属于衍射微结构,微透镜阵列是折射微结构。随着微小光学以及微小光学器件的制作工艺不断发展进步,微小光学的应用范围也越来越广。微小光学器件已经在光通信、光学计算、光学互连、光束整形以及成像等方面具有不可替代的作用。光栅是重要的光学器件,如果衍射结构具有空间周期性就可以
烟草(Nicotiana tabacum L.)是我国重要的农业经济作物,其生产过程中多受烟蚜(Myzus persicae Sulzer)、斜纹夜蛾(Spodoptera litura Fabricius)和棉铃虫(Helicoverpa armigera Hubner)等害虫为害。利用植物诱导抗虫性防治害虫是一种新型绿色有效的防控方法。本文以生产上常用烟草品种?MS K326?为供试植株,研究
临床研究一 NA-AION眼部血流动力学的变化及其与RNFL厚度的相关性研究目的:探索非动脉炎性前部缺血性视神经病变(NA-AION)眼部血流动力学的变化及其与RNFL厚度的相关性。方法:本研究采用回顾性临床研究的方法。研究对象为2018年1月至2018年12月,在北京中医药大学东方医院病房住院的非动脉炎性前部缺血性视神经病变的患者。对照组选择2018年1月至2018年12月在我院彩超室行眼部血管