论文部分内容阅读
随着经济的发展和人们生活水平的提高,排入自然界的氮素总量迅猛增加,破坏了自然界原有的氮素循环,导致氮素循环中间产物(主要为氨、亚硝酸盐和硝酸盐)积累,造成环境污染,危害人类及生态系统。硝化、反硝化和厌氧氨氧化在氮素循环中发挥着重要作用,以此为基础的硝化工艺、反硝化工艺和厌氧氨氧化工艺是废水生物脱氮的主要技术。过程控制是生物脱氮工艺高效运行的基础。生物脱氮过程伴随着离子种类和数量的改变,可导致反应液电导率的改变。因此,有望以电导率指示生物脱氮过程性能,辅助过程控制。氨是微生物燃料电池(MFC)的潜在能源,构建氨氧化微生物燃料电池(AO-MFC)和厌氧氨氧化微生物燃料电池(ANAMMOX-MFC),不但能够同时实现治污和产电,还有望通过MFC的电信号变化实时反映生物脱氮过程性能,为过程控制提供信息。鉴上所述,笔者考察了生物脱氮过程性能与电导率变化的关系,研发了AO-MFC和ANAMMOX-MFC,并研究了其脱氮产电性能,主要结论如下:1)建立了硝化、反硝化、厌氧氨氧化过程性能与离子强度及电导率变化的关系。研究结果表明:电导率与模拟废水的离子强度近似成正比,与主要成分浓度呈显著的线性关系;电导率能反映生物脱氮工艺容积负荷与容积效能、进水浓度与出水浓度的大小;电导率可用于指示生物脱氮过程性能的变化,也可用于辅助生物脱氮的过程控制。2)探明了反硝化过程电导率变化的原因。反硝化过程消耗N03-,同时生成相同电荷数的HC03或CO32-,理论上反应后不引起电导率降低。碱度衡算发现:反硝化中产生C032-可引起反硝化过程电导率变化;相同离子电荷数的Na2CO3溶液电导率明显小于NaNO3溶液;反硝化中产生的部分C032-与废水中的Ca2+反应形成CaC03沉淀,进一步降低反应液电导率。3)研发了氨氧化微生物燃料电池,探明了溶解氧(DO)对硝化和产电性能的影响及其机理。研究结果表明:AO-MFC的最大氨氮转化率为99.7%。稳定产电期的输出电压为98.5±1.41mV,功率密度为9.70±0.27mW m-2。在AO-MFC系统中,氨释放的电子分别流向氨单加氧酶(AMO)、 Cyt aa3氧化酶和电极,依次用于触发氨氧化、合成ATP和产生电流,分子氧控制着三者之间的电子分配。DO浓度过高或过低都会削弱产电性能。4)研发了厌氧氨氧化微生物燃料电池,探明了其脱氮和产电性能。研究结果表明:以厌氧氨氧化富集培养物(ANAMMOX Enrichment Culture, AEC)作为催化剂,以铵盐和亚硝酸盐作为反应基质,/ANAMMOX-MFC可成功产电。ANAMMOX-MFC容积负荷(NLRs)和容积去除速率(NRRs)分别为1.72-2.57kg N m-3d-1、1.64-2.38kg N m-3d-1,氨氮和亚硝氮去除率分别为88.9%-98.3%、88.7%-97.2%。随着基质浓度的提高,ANAMMOX-MFC工作电压从12.8mV逐步增大至131mV,其面积功率密度和体积功率密度分别从0.17mWm-2、1.08mWm-3上升至183mW m-2、115mW m-3。停止基质供给,ANAMMOX-MFC产电性能急剧下降,恢复基质供给,产电性能迅速恢复。/ANAMMOX-MFC产电性能易受阴极表面MnO2沉积所影响。