基于色散工程的光场调控研究

被引量 : 1次 | 上传用户:zhaomohans
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着光学器件的发展和应用,对于光学和材料的相互作用的研究吸引了人们的兴趣。材料的光学响应可以通过材料的参数来描述,比如相对介电常数和相对磁导率。运用麦克斯韦方程进行计算,可以得到材料的色散曲线,它可以清楚的描述材料的光学响应或者光学结构的产生的电磁波模式。随着现代制作工艺的发展和先进设备的应用,对光的研究起到了很大的推动作用。磁光材料中产生的磁光效应可以让材料产生新的光学性质,人们对磁光材料做了大量的研究,特别是磁光材料产生的非互易性效应,可以实现光在材料中的单向传输。最近十多年,超材料的出现为对光
其他文献
共面转换(IPS)模式、边缘场(FFS)模式液晶显示器由于其本身宽视角特性被广泛的应用在高端显示中,但它存在高阈值电压、制作难、响应速度较慢问题等,本文将对上述问题进行研究和探讨
铁氧体是一类传统的吸波材料,但存在密度大、微波吸收频带窄的问题,因此,铁氧体吸波材料的改性仍然是目前的一个研究热点。对铁氧体改性除掺杂和复合等途径外,颗粒形貌特殊化对其微波吸收特性的改善也有重要作用。本文研究了尖锥八面体形貌Fe304和六角片状W型掺杂铁氧体的微波吸收特性。用水热法制备了Fe304晶粉,用X射线衍射仪(XRD)和扫描电子显微镜(SEM)、红外光谱仪(FT-IR)、能谱仪(EDS)对
表面等离激元,由于其独特的空间尺寸压缩效应与局域场增强效应,发展成为纳米光子学研究领域中的一个重要分支。目前,表面等离激元被广泛应用于增强非线性、表面增强拉曼散射、表
随着科技的发展,混沌保密通信技术在不断完善的过程中,弊端也不断出现,对现代混沌保密通信技术提出了更高的要求。本文针对现有的混沌保密通信系统传输的抗破解性不高,易被有经验
日益严重的环境污染和储量渐少的化石燃料是目前人类面临的两大问题,而利用太阳能光解水制氢来获取清洁新能源是解决这两大问题的重要途径之一。在众多的光解水光电极材料中,硅(Si)是一种重要的光阴极产氢材料,不仅仅因为其本身丰富的储量,还因为其具有与太阳光谱相对匹配的窄带隙和合适的产氢能带结构。但是由于其产氢表面效率较低,需要较大的过电势,因此很难得到高效的光电极。为了克服这个困难,一直以来众多研究人员在
阿秒(1as=10-18s)是研究电子超快过程和原子分子尺度内电子动力学过程的有力工具,利用阿秒脉冲来对时间宽度为2.5飞秒的超短脉冲进行成像和对原子内壳层Auger过程进行跟踪的