论文部分内容阅读
本论文以二氧化锰材料为研究对象,采用水热方法合成一系列不同晶型和形貌的二氧化锰材料;针对其中的层状二氧化锰可插层和可剥离的性质,采用长链烷基铵插层二氧化锰材料为前体,制备聚合物与二氧化锰纳米复合材料,并对其电化学及光学性能进行了研究;采用层板剥离技术,制备二氧化锰纳米片,并以其为构建模块,分别采用静电组装技术和电泳沉积法制备了二氧化锰无机—无机和有机—无机复合薄膜材料。采用X射线衍射(XRD)、电感耦合等离子体原子发射光谱(ICP-AES)、傅立叶变换红外光谱(FTIR)、紫外可见光谱(UV-vis)、X光电子能谱(XPS)、热重-质谱联用(TG-MS)、透射电镜(TEM)、高分辨透射电镜(HRTEM)、场发射扫描电镜(FESEM)、原子力显微镜(AFM)和电化学测试等表征手段对合成产物、反应机理以及材料的组成结构与电化学及光学性能之间的关系进行了较深入的研究。采用水热法合成了一系列不同晶型的二氧化锰纳米材料,包括α、β、Na[2×4]一维隧道型二氧化锰,δ型层状二氧化锰,无定型二氧化锰。对于KMnO4-MnSO4反应体系,通过调变水热处理时间或起始反应物的浓度,实现了具有不同晶型和形貌的二氧化锰的可控合成。在160℃水热反应处理8h,可以得到α-MnO2纳米线;继续延长反应时间至72 h,可以得到具有棱柱状形貌的β-MnO2微晶。在水热反应过程中,α-MnO2纳米线由于取向堆积自发形成大的团束,随后发生晶型转变,形成β-MnO2微晶。KMnO4-MnSO4反应体系在160℃水热处理30min后,可以得到一种无定型介孔二氧化锰纳米材料。比表面积高达196 m2·g-1,最可几孔径分布为3.7 nm。在1 mol·L-1的Na2SO4水溶液中测试其电化学性能,比电容可达323 F·g-1,且倍率特性好,恒流充放电循环测试3000次后,比电容的保持率为96%。对于H2O2-Mn(NO3)2-NaOH反应体系,通过调变水热处理温度,分别可以得到不同晶型二氧化锰产物。在120℃水热反应处理16h,可以得到Na-birnessite型层状二氧化锰;在200℃水热反应处理16h,可以得到Na[2×4]一维隧道型二氧化锰,且产物具有特殊的纳米带状形貌。提高水热处理温度,有利于形成隧道型二氧化锰。采用剥离重组法,即将十八烷基三甲基铵插层二氧化锰在N-甲基吡咯烷酮溶剂中超声剥离,再与导电聚合物(聚吡咯和聚苯胺)复合,制备了导电聚合物插层二氧化锰纳米复合材料,并对其作为超级电容器电极材料的电化学性能进行了研究。纳米复合材料表现出比单个组分更加优越的电化学性能,这是由于将导电聚合物与二氧化锰材料复合,可以提高复合材料的导电率;同时,导电聚合物可以将二氧化锰层板撑开,提高了复合材料的空隙率,有利于离子在电极材料中的扩散。聚苯胺插层二氧化锰复合材料的比电容为330 F·g-1,而单纯的层状二氧化锰和聚苯胺的比电容分别为208 F·g-1和187 F·g-1。此外,复合材料的电化学循环性能比单个组分也明显得到改善。采用熔融共混法,通过将双十八烷基二甲基铵插层二氧化锰与线性低密度聚乙烯(LLDPE)混合制备了LLDPE/MnO2纳米复合材料。熔融处理10 min可以得到LLDPE插层二氧化锰复合材料,延长熔融处理时间至30 min,可以得到完全剥离型的LLDPE/MnO2纳米复合材料。LLDPE/MnO2剥离型纳米复合材料表现出良好的紫外屏蔽性能和热稳定性,这可能与剥离MnO2纳米片在LLDPE本体中分子级别的分散以及纳米片材料的二维尺寸效应有关。采用静电组装技术,分别制备了水滑石纳米片/二氧化锰纳米片无机多层复合薄膜和聚乙烯亚胺/二氧化锰纳米片有机—无机多层复合薄膜(PEI/MnO2)n。UV-vis光谱显示薄膜的增长十分均匀。我们考察了(PEI/MnO2)n复合薄膜作为超级电容器电极材料的电化学性能。随着(PEI/MnO2)n层数的增加,薄膜的比电容线性增加。(PEI/MnO2)10薄膜电极的比电容为288 F·g-1,循环1000次后,比电容保持率为90%。采用超声处理的方法,成功实现了四甲基铵插层二氧化锰在乙腈有机溶剂中剥离;采用电泳沉积法,以含有剥离二氧化锰纳米片的乙腈溶剂为电解液,在氧化铟锡导电玻璃上制备了(00l)取向的层状二氧化锰薄膜。