论文部分内容阅读
自然界中最普遍问题大多是关于非线性非保守动力学系统的问题,非标准Lagrange函数具有一些标准Lagrange函数不具有的一些性质,它能描述非线性非保守问题,因此对非标准Lagrange函数的研究有很重要意义和价值。本文主要是对指数Lagrange函数和幂律Lagrange函数下动力学系统的Noether对称性、Lie对称性和Mei对称性这三种对称性摄动与绝热不变量问题的研究。 本文第一部分,首先,列出指数Lagrange函数和幂律Lagrange函数以及El-Nabulsi模型下指数Lagrange函数和幂律Lagrange函数下的Noether型精确不变量。其次,再从高阶绝热不变量的定义出发,继续探究小扰动作用下指数Lagrange函数和幂律Lagrange函数以及El-Nabulsi模型下指数Lagrange函数和幂律Lagrange函数下的Noether对称性摄动与其导致的Noether型绝热不变量之间的关系。最后,再由高阶绝热不变量存在的条件和形式,建立了相应的摄动定理。 本文第二部分,首先,列出指数Lagrange函数和幂律Lagrange函数下的Lie对称性间接导致的Noether守恒量和直接导致的Hojman守恒量。其次,再从高阶绝热不变量的定义出发,继续探究小扰动作用下指数Lagrange函数和幂律Lagrange函数下的Lie对称性摄动与其间接导致的Noether型和直接导致的Hojman型绝热不变量之间的关系。最后,再由高阶绝热不变量存在的条件和形式,建立了相应的摄动定理。 本文第三部分,首先,列出指数Lagrange函数和幂律Lagrange函数下的Mei精确不变量。其次,再从高阶绝热不变量的定义出发,继续探究小扰动作用下指数Lagrange函数和幂律Lagrange函数下的Mei对称性摄动与其直接导致的Mei绝热不变量之间的关系。最后,再由高阶绝热不变量存在的条件和形式,建立了相应的摄动定理。