大气湍流对单模光纤耦合效率影响的理论分析与实验研究

来源 :中国科学院大学(中国科学院长春光学精密机械与物理研究所) | 被引量 : 0次 | 上传用户:manhong85
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
激光通信技术是一种以激光为载波的通信方式,是航空航天及国防军工领域的关键通信技术,并正逐步融入民用领域。在大气环境中应用激光通信技术时,受大气湍流干扰,接收端空间光信号到单模光纤的耦合效率及稳定性显著下降,严重影响了通信质量。高效、稳定的光纤耦合效率是实现高速大气激光通信的前提和保障,空间光到单模光纤耦合效率问题已成为制约大气激光通信技术亟待解决的技术瓶颈。自适应光学技术是目前解决大气湍流对光信号干扰,提高耦合效率的最佳方法。由于自适应光学技术最初目的是解决天文观测中大气湍流对成像质量的影响问题,因此传统的自适应光学系统大多是针对成像需求进行设计的,专门针对激光通信系统需求的设计及研究相对较少。基于上述背景,为研究大气湍流对激光通信系统中单模光纤耦合效率的影响机理,探索抑制大气湍流对耦合效率的影响方法。本文针对激光通信链路,分析了大气湍流空间频率与时间频率特性对耦合效率的影响,以耦合效率为依据分析了激光通信系统对自适应光学系统校正能力的需求,给出了自适应光学系统校正残差裕度、模式数目及系统带宽的分析与设计方法,并通过实验验证了自适应光学系统对耦合效率及通信质量的优化作用。本文主要进行了以下工作:1.基于经典理论分析了大气湍流的成因与折射率起伏效应,对比了几种经典的大气湍流模型,以HV模型为基础,分析了典型激光通信波段下大气湍流的特点。2.推导了可快速计算像差空间模式对耦合效率影响的数学模型,分析了光学系统参数对耦合效率的影响,以Noll泽尼克序列为基础,分类讨论了不同类型的像差模式对耦合效率的影响,针对特定耦合效率阈值分析了自适应光学系统倾斜和高阶校正残差的裕度范围。通过实验验证了像差模式对耦合效率影响的分析结果。3.分析了波前整体倾斜像差对耦合效率的影响,针对激光通信系统需求对整体倾斜校正系统的器件特性及校正带宽进行了研究。建立实验环境,验证了不同泰勒频率的模拟湍流扰动下,整体倾斜校正系统的校正能力。实验结果显示,对于系统静态噪声闭环后G倾斜STD值小于0.3μrad,在动态模拟湍流,最大抑制比超过-30d B。4.分析了高阶像差校正系统关键参数及系统带宽对耦合效率的影响,给出了校正系统规模、校正像差数目及系统带宽与耦合效率的关系,建立了激光通信自适应光学实验系统,在不同强度的模拟湍流下验证了校正系统对耦合效率的优化作用。在格林伍德频率为120Hz的模拟湍流扰动下,实现了平均耦合效率40.83%,光功率抖动0.48d Bm。在模拟湍流信道中进行了激光通信实验,实现了统计时间内的100%帧同步,无交织编码情况下平均误码率达到4.6*10E-5。本文的上述研究内容,能够为以单模光纤耦合效率为评价依据的激光通信自适应光学系统的研究与设计工作提供关键理论依据与技术支撑,为深入研究激光通信自适应光学技术提供重要参考。
其他文献
学位
城市化进程加快以及城镇人口数量激增对燃气管网完整性提出了更高要求,只有保证燃气管网的完整性、应用的系统性,才能提高燃气输送质量。本文简要介绍了城镇燃气区域管网完整的重要性,主要分析城镇燃气区域管网完整性系统应用要点,希望为提高城镇燃气管网运行安全与燃气输配送质量提供支持。
新时期,新的化工企业安全生产管理措施开始推行,传统化工企业安全标准受到了极大的冲击,为了适应当下的安全要求,化工企业在获得化工产品带来收益的同时,必须兼顾探索新的安全生产管理办法。本文将就我国现阶段化工企业的安全现状分析影响化工企业安全隐患的因素并提出在新时期如何加强化工企业安全生产管理的有效措施。
沈阳地处辽河平原的中部,辽河水系的巨多河流滋养这里。它南连辽东半岛,北依长白山麓,这么肥美的土地,是人类生活的良好家园。11万年前的旧石器时代,沈阳地区就已有人类活动。7000多年前,中华民族的分支先民在此农耕渔猎繁衍生息,创造出新乐文化。让我们通过考古走进沈阳11万年的历史吧。
期刊
三十米望远镜(Thirty Meter Telescope,TMT)三镜系统在观测过程中工况十分复杂,且反射镜的径厚比大,对支撑结构的要求很高。同时三镜系统对质量和体积也有着极为苛刻的限制,进一步增大了支撑结构设计难度。本文针对三镜支撑结构进行了支撑方案优化、结构优化设计及分析、误差分析和原理样机搭建等方面的研究。首先,基于参数化模型和模拟退火优化算法实现了对椭圆形反射镜底支撑支撑点布局的全局寻优
随着航天科技的不断发展,空间机械臂将在轨组装、在轨制造和深空探测等领域发挥越来越大的作用。实现空间机械臂的自动控制及柔顺操作是空间机械臂不可缺少的一项功能。六维力传感器广泛的应用于机械臂末端,能够同时测量三个方向的力与力矩,实现机械臂的力与力矩反馈,是机械臂对末端机构进行精准力控制不可或缺的重要传感器。由于航天领域特殊的工作环境和对可靠度的严苛需求,普通商用的六维力传感器很难满足空间机械臂的应用要
光电角位移测量技术是一种将角位移转换为数字量的精密测量技术,已广泛应用于国防和工业控制领域中。随着航空航天技术的发展,对光电角位移测量装置提出了更高的要求,不仅要减小外径尺寸和重量,更要提高装置的分辨力和精度。本文研究的图像式角位移测量技术,通过光学成像技术缩小了角位移测量装置的体积;采用数字图像处理技术,提高了角位移测量装置的分辨力和精度,对实现高精度高分辨力的小型角位移测量具有重要意义。在参考
对于反射镜式光学遥感相机,光学系统的主反射镜往往是光学系统中口径最大,技术最难、周期最长,成本最高的一块非球面反射镜,所以在研制和探索非球面反射镜的新材料、新工艺的过程中,高精度、低成本、性能优良、能够快速制造的材料是反射镜发展的必然趋势。单晶硅具有较小的密度和线胀系数、极高的均质性、高导热性等优异的力学及热学性能,同时单晶硅非球面反射镜的加工周期和成本相对其他常用的陶瓷、玻璃和金属反射镜而言都更
光纤激光器以其优质的光束质量、良好的散热、易于小型化集成等优点,在激光加工、医疗和国防等各个领域都具有非常重要的应用前景。特别是波长位于3-5μm大气透射窗口的中红外光纤激光,更是受到红外对抗、气体探测和生物医疗等领域的广泛关注。然而,传统制作光纤采用的是石英材料,这种材料普遍具有较大的声子能量,因此在波长大于2.2μm时传输损耗较大。而氟化物材料具有较低的声子能量,是实现中红外光纤激光器常用的光