CAFe装置的服务器及网络系统设计与监控

来源 :中国科学院大学(中国科学院近代物理研究所) | 被引量 : 0次 | 上传用户:sunning1002
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
CAFe(the China ADS Front-end demo)直线加速器样机属于中国科学院战略重点研究项目ADS(Accelerator Driven Sub-critical System)的技术预研系统,也是十二五大科学装置的关键部分。其中控制系统是其重要的组成部分之一。控制系统中服务器系统与网络系统作为控制软件运行和数据交互的支撑平台,其运行的稳定性与可靠性对控制系统具有重要影响。本文针对现有系统在运行过程中存在的实际问题,基于群集技术、光纤网络技术和Zabbix系统监控技术,对服务器和网络系统从系统设计、方案实施到运行状态监控等多方面做了技术改进和功能优化,提高了CAFe控制系统的服务器与网络系统的运行稳定性和可维护性。论文主要工作如下:首先,针对目前服务器单机系统在现场运行中存在的问题,提出了构建分布式私有云平台Open Stack的技术方案,取代传统单服务器系统的运行模式。Open Stack平台与传统的服务器系统相比,有以下三个优点:1.整合多台服务器的硬件资源和磁盘阵列,实现计算资源的在线可分配;2.图形化显示服务器硬件资源的使用状态和所有虚拟机实例;3.利用虚拟机的在线热迁移技术,使服务器平台的运行稳定性与数据安全性得到了很大的提高。其次,对现有网络系统进行了重新设计和改造。针对频繁断网和维护困难的问题,对CAFe的网络系统进行了重新设计。与以前的网络系统相比,现在的网络系统有两个新特点:1.采用三层结构,使用两台冗余核心交换机,主数据通道采用光纤传输;2.利用SNMP协议自动获取网络交换机的运行状态数据。最后,针对装置运行现场存在的服务器软件失效与网络失联的故障现象,设计并部署了基于Zabbix的监控系统。对设计完成的服务器集群与网络系统的运行状态实现了分布式远程监控功能,这为CAFe控制系统的平稳运行提供了技术保障。目前,私有云平台和网络系统的相关现场改造工程已经完成,Zabbix监控系统在实际运行环境中已完成功能测试,并已投入现场使用一年时间。Open Stack平台和网络系统在稳定性和可靠性方面表现出良好的预期效果,为CAFe控制系统的稳定运行奠定了坚实的基础。
其他文献
我国“十二五”工程计划建造一台空间环境地面模拟装置SESRI(全名Space Environment Simulation and Research Infrastructure),在地面实验室先行验证辐射对航天材料、电子器件以及生命体等升空物质的影响。SESRI工程主导单位是哈尔滨工业大学。其中的加速器设计与建设工作由近代物理研究所承担。本文针对SESRI加速器同步环二极磁铁与终端扫描磁铁的准直
重离子碰撞是当前在实验室进行高温/高密核物质研究的近乎唯一手段。其中对QCD相图的研究,特别是寻找QCD相边界和相变临界点,是高能核物理领域一个非常重要的物理目标。另一方面,高重子数密度区核物质的状态方程除了对核物理本身有重要意义,对理解致密星体结构也十分重要。低温高密核物质测量谱仪(CEE)是研究高重子数密度区核物质性质的重离子碰撞实验谱仪,其科研目标正是进行QCD相变和核物质状态方程的研究。C
CiADS超导直线加速器是国际上首台驱动嬗变研究装置的高功率连续波运行超导加速器。CiADS设计流强5m A,能量500Me V,未来预计将升级到10m A,1Ge V。由于运行指标和终端的特殊需求,总体物理设计主要面临两方面的挑战:极低的束流损失率和高可用性要求。因此,加速器运行时需要满足1W/m的辐射安全要求和2.5MW的运行功率,并且束流损失率要控制在10-6以下。综上所述,为了使终端安全运
未来先进核能系统中的结构材料服役期内将会面临强辐照、高温、应力、以及高He累积等极端工作条件的考验,导致材料发生辐照肿胀,辐照析出、辐照蠕变、辐照脆化等影响材料安全性和可靠性的问题,这对材料的性能提出了更高的要求。铁素体/马氏体钢以其优异的抗辐照肿胀、蠕变性能和低热膨胀系数等优点而得到了国际上广泛的认可,被认为是最有潜力的未来先进核能系统候选结构材料。因此开展其抗辐照性能研究,尤其是抗辐照肿胀性能
强流重离子加速器装置(HIAF)将采用电子冷却技术,降低重离子束流的发射度和动量分散,提高核物理及原子物理实验的精度与亮度。电子冷却装置的冷却段磁场均匀度是影响冷却效率的主要参数。本论文介绍了测量和获得电子冷却装置冷却段高均匀度磁场的方法。本论文提出了一种测量电子冷却装置冷却段线圈磁轴偏角的方法,介绍了线圈磁轴测量装置的设计与制造。根据磁场测量装置参数和准直设备参数的计算和SRing电子冷却装置样
钒合金具有优异的高温强度,低活化特性以及与液态锂具有较好的相容性等优点,是聚变堆候选结构材料之一。钒合金在温度低于400℃下辐照会有明显的辐照硬化效应发生,同时伴随着延伸率的急剧下降和韧脆转变温度(Ductile-brittle Transition Temperature,DBTT)的升高。因此低温(﹤400℃)下的辐照硬化/脆化是钒合金作为先进核能系统结构候选材料需要关注的重要问题之一。不同冷
中国加速器驱动嬗变研究装置(CiADS)选用铅铋冷却堆作为研发堆型。作为第四代反应堆,铅铋冷却快堆中子能谱更硬,中子经济性更高;此外,液态铅铋冷却剂具有较高的导热性,及不与水发生剧烈的化学反应等稳定的化学性质。为了维持反应堆的安全运行,提高反应堆的服役年限,需要对CiADS铅铋冷却堆的堆芯流量分配方案进行合理的优化,实现组件的功率份额与流量分配份额相匹配,展平冷却剂在堆芯出口的温度分布。目前,由于
高频系统的作用是产生高频电场,给予加速器中的粒子能量。频率调谐系统是高频系统的重要组成部分。高频谐振腔的调谐方法主要分为基于相位差的调谐方法和基于腔体反射信号的调谐方法。环境温度变化会导致信号相位漂移,影响基于相位差的调谐方法的准确性。此外,应用基于相位差的调谐方法,需要经常性的手动调整。相比之下,基于反射信号的调谐方法受环境温度影响程度较小,准确性较高且启动时间较短。为进行基于反射信号的腔体调谐
因进行高精度的核测实验,加速器装置的核物理实验终端提出产生时间结构为:单个束团脉宽1ns、相邻束团间隔1ms的脉冲束团链。在CAFe超导直线加速器中,每一个高频周期长度的束团经高频系统调制后脉宽可达到1ns,但两相邻束团时间间隔约为6.15ns,无法满足实验终端对束团间隔为1ms的要求。为了提供符合终端需求时间结构的束流,本文采用的方法是在低能传输段内用束流斩波器每隔1ms切割出脉宽为单个高频周期
铅铋共晶(LBE)因其高的热导率、低熔点、高沸点等优异的物理性能和低化学活性,作为铅冷快堆(LFR)的冷却剂,同时也是加速器驱动次临界系统(ADS)中次临界反应堆冷却剂和散裂靶的重要候选材料。但是,LBE与结构材料接触会引起材料的腐蚀,导致材料性能的恶化,成为制约LFR和ADS铅冷反应堆发展的瓶颈问题之一。TiAlN涂层因其具有高抗辐照、高温氧化、腐蚀性能和化学稳定性,在面向LBE的结构材料的防护