论文部分内容阅读
固溶态奥氏体不锈钢具有较高的抗拉强度和极好的塑性指标,但因其屈服强度较低而使通常设计制造的奥氏体不锈钢制压力容器壁厚较厚,材料利用率低,经济性较差。采用应变强化技术来制造奥氏体不锈钢容器能显著提高材料的屈服强度,减薄容器的设计壁厚,减少容器的用钢消耗,从而可以实现压力容器的轻型化,同时容器的安全性也能得到保证,因此应变强化技术是一种节材降耗的绿色制造技术。本文对应变强化技术应用于奥氏体不锈钢容器的相关问题进行了系统的理论和试验研究。分析了应变强化对奥氏体不锈钢材料的常温、低温和高温力学性能的影响;设计并制造了奥氏体不锈钢试验容器,讨论了容器应变强化的时机、处理方式、压力控制及应变测量方法等问题;通过有限元模拟了容器的应变强化过程,得到了容器关键部位的应力应变规律;探讨了应变强化对奥氏体不锈钢材料在高温氯离子环境中应力腐蚀开裂敏感性的影响及其对材料高温棘轮行为的影响规律。主要研究内容如下:讨论了应变强化过程中的两个关键工艺参数应变速率和应变量对奥氏体不锈钢力学行为的影响。研究结果表明,强化过程中应变速率不宜过慢,否则材料会出现锯齿形屈服效应,从而对材料的使用性能造成不利影响。室温下把应变量控制在10%以下,在显著提高S30408奥氏体不锈钢屈服强度的同时,对材料的常温和低温力学性能影响不大,且强化效果在100~400℃温度区间内仍保持较好。以J积分作为评价指标,测定了应变强化前后含缺陷奥氏体不锈钢焊缝金属的常温断裂韧性,得到了原始态和强化态焊缝金属的启裂韧度J1C的表观值。与原始焊缝性能相比,8%强化态焊缝金属的屈服强度仅提高了19%,而J1C表观值却下降了近33%。这表明焊缝的性能对应变强化效应比较敏感,因此对应变强化容器的焊接工艺、焊接质量和焊后检验要求更加严格。按照现行应变强化技术标准设计并制造了低温操作下的奥氏体不锈钢试验容器,并对其实施了应变强化过程。采用应变片、百分表和周长测量三种方法来测量和控制容器应变强化过程中的应变量,并对比了三种方法的优劣及适用条件。由应变强化容器的爆破试验结果可知,应变强化处理后的容器仍保留了良好的塑性储备,说明容器经应变强化处理后的使用安全性可以保证。基于材料非线性和几何非线性建立了奥氏体不锈钢容器应变强化过程的有限元模型,在验证有限元模型可靠性的基础上,对容器的应变强化过程进行数值模拟,得到了容器关键部位的受力情况和变形规律。针对奥氏体不锈钢容器在腐蚀性介质环境中服役易发生应力腐蚀开裂的情况,采用慢应变速率试验方法,研究了应变强化前后奥氏体不锈钢母材和焊接接头在高温氯离子环境中的应力腐蚀敏感性变化情况。研究发现,随着应变量的增加,S30408奥氏体不锈钢母材的应力腐蚀敏感性呈上升趋势,其中8%强化态母材试样的应力腐蚀敏感性指数比固溶态材料高出近一倍。由于奥氏体不锈钢焊缝中含有一定量的铁素体,因而在焊缝处断裂的试样应力腐蚀敏感性相对较低。研究还发现应变强化有利于改善焊缝中存在的焊接残余应力。开展了应力控制模式下的疲劳试验,研究应变强化对奥氏体不锈钢高温棘轮行为的影响。研究发现,固溶态材料的棘轮行为随着应变幅的增加愈加显著,而材料经应变强化后,棘轮行为可以得到明显的抑制,并且随着预应变量的增加,棘轮受抑制程度愈加明显,且应力控制下的疲劳寿命也逐步提高。在Hull-Rimmer理论的基础上,建立适用于不同预应变强化量条件下的奥氏体不锈钢高温疲劳寿命预测方程,预测结果与试验结果吻合较好。