论文部分内容阅读
电解二氧化锰是资源、能源消耗高,污染物产生量大的行业。其产生的含锰废水中含有大量的锰,直接排入水体,将会对水体、土壤等生态系统造成严重污染,带来一系列环境问题。目前普遍使用石灰中和水解法处理,但出水难以稳定达到排放标准。含锰废水的高效治理仍是重金属废水处理中关注的焦点。本研究在热力学研究及含锰废水特性分析的基础上,开发了生物制剂配合-水解法直接深度处理含锰废水新技术。在全面考虑锰离子在水中存在的各种羟合配离子的基础上,引入配位化学和水化学的有关理论,对Mn2+-H20体系中羟合配离子的热力学平衡进行详细全面的分析研究,并利用Pitzer理论计算了体系中不同离子强度下的活度系数,绘制不同离子强度下锰的各类配合离子浓度pc-pH图。根据配位化学热力学原理及Pitzer理论,绘制了298.15K下-lnγ±MnSO4 -I关系图及pc-pH图。-lnγ±MnSO4 -I图表明I从0.00到0.09时,-lnγ±MnSO4从0.00迅速增大到1.21;当0.00≤I≤1.69时,-lnγ±MnSO4变化很缓慢;I≥2.25时,-lnγ±MnSO4基本不变。pc-pH图表明Mn(OH)2(s)的最小溶解度随离子强度的增加而增加,当I由0.00增加到4.00时,pc由6.5减小到5.5;最小溶解度的pH也随离子强度增加而增加,离子强度由0.00增加到2.89时,pH由11.80增至12.76,I(I≤4.00)再增加,pH保持不变;不同离子强度下Mn(OH)2(s)的最小溶解度与相应的pH存在单值函数关系。在含锰废水特性分析的基础上,开发了生物制剂配合-水解法直接深度处理含锰废水新技术。含锰废水生物制剂配合体系中存在两个缓冲区,分别为pH值8.80-11.18和12.28-13.08。废水从pH值2.04升高至10.00左右,氢氧化钠的理论加入量为2.67-4.00g/L。生物制剂配合-水解法直接深度处理含锰废水优化工艺条件:生物制剂加入量控制生物制剂与废水中锰的质量比为0.2,配合时间5 min,水解时间5 min,温度25℃,pH值10.0,PAM加入量2 mg/L,可将废水中锰浓度从994 mg/L去除到0.127 mg/L,扩大实验结果出水中锰浓度为0.0651 mg/L,达到了《生活饮用水卫生标准》(GB5749-2006)的限值0.1 mg/L。正交试验的极差分析表明,影响生物制剂去除锰离子的各因素的主次顺序为:pH值>配位时间>生物制剂加入量>温度>PAM加入量>水解时间。沉渣SEM、EDS、XRD、IR分析结果表明:含锰沉渣呈无定型及棒状,主要物相为CaSO4,渣中锰含量达14.16%,可返回生产系统回收锰。生物制剂通过其中的-OH、-COOH、-NH、-C=O、-S03、-C-O(H)、C-Cl等基团与废水中的含锰离子配合,在水解的过程中形成难溶物质沉淀分离。现场工业试验结果确定了工业生产最优条件:生物制剂的投加量控制生物制剂与废水中锰的质量比为0.6,配位时间为40 min,水解时间60min、pH 10。最优化条件下的工业试验,净化水中锰离子的浓度为0.05 mg/L,远低于国家的一级排放标准2 mg/L,达到了《生活饮用水卫生标准》(GB5749-2006)的限值0.1 mg/L。处理成本与原水中锰离子的浓度成正比关系,但目前湘潭电化废水中Mn2+的平均浓度低于600 mg/L,生物制剂的药剂成本低于3元/吨。