论文部分内容阅读
蠕墨铸铁因其良好的综合性能在高功率密度柴油机缸盖上获得了广泛的应用,然而随着发动机功率的增加,蠕墨铸铁的各项性能指标也必须进一步提升。材料的性能取决于其组织,而组织转变取决于凝固过程,因此就需要更加深入地了解蠕墨铸铁的凝固过程,以求更好地改善其性能。关于蠕墨铸铁的凝固过程,已经有不少学者进行过研究,但是其研究成果绝大多数是定性地描述,鲜有定量的描述。本文以高功率密度柴油机缸盖用蠕墨铸铁为基础,采用液淬的方法获得蠕墨铸铁凝固过程中不同时期的晶体组织状态,结合热分析法分析蠕墨铸铁的组织转变过程,在此基础上研究了合金元素和蠕化剂加入量对蠕墨铸铁凝固过程的影响,总结了蠕墨铸铁的组织转变规律,探索了蠕墨铸铁的蠕化机理。并且利用高分辨率X射线三维扫描成像技术分析了蠕虫状石墨三维形态的转变过程,利用扫描电子显微镜分析了蠕虫状石墨的形核机制,利用DT2000专业金相分析软件总结了蠕虫状石墨的形核和长大规律,研究了蠕虫状石墨形核和结晶的动力学。结果表明:(1)合金元素Cu、Mo、Sn对蠕墨铸铁的凝固曲线特征值、共晶组织转变过程及石墨的长度和含量均没有明显影响。(2)蠕化剂加入量对蠕墨铸铁的共晶组织转变过程影响很大。蠕化剂加入量为0.2%时,共晶奥氏体的生长速度比畸变石墨慢,因此畸变石墨长成片状,且大范围连通,共晶反应结束时片状石墨的连通率为88.87%。蠕化剂加入量为0.4%时,共晶奥氏体的生长速度比畸变石墨快,使畸变石墨不能大范围连通,最终长成蠕虫状。蠕化剂加入量为0.6%时,共晶奥氏体的生长速度更快,导致一些未畸变的球状石墨被完全包裹住而不能畸变,因此蠕化率下降。(3)蠕墨铸铁中的石墨结晶时,其最初形貌是球状。共晶反应开始后由于共晶奥氏体的析出,铁液中的氧、硫含量富集到一定程度,导致和铁液直接接触的球状石墨发生畸变,然后畸变石墨生长连通在一起。由于共晶奥氏体的生长速度比畸变石墨的生长速度快,共晶奥氏体逐渐将畸变石墨包裹住,使畸变石墨只能在小范围内相互连通,最终长成蠕虫状,蠕虫状石墨室温下的连通率为32.5%。(4)蠕虫状石墨的异质核心物质有CeS、MgS、CaS、La2S3、FeS、A1203、TiC,石墨异质核心是由其中的几种物质共同组成的,核心尺寸为12.5μm。过共晶蠕墨铸铁中的石墨主要在初生石墨阶段形核,共晶反应初期也有石墨形核,石墨形核速率不断下降,形核数量 N 与时间 t 的关系为 N =-1.1 + 1.1sin[(t+5911.8)π/11929.4]。(5)共晶反应阶段是石墨生长的主要阶段,石墨结晶速率先增长后降低,在共晶反应开始70s时,石墨结晶速率最快,此时石墨长度增长速率为1.33μm/s,石墨含量增长速率为0.18%/s。石墨长度L与时间t的关系为L = 100.54-93.87(1+e(t-99.98)/16.98,石墨含量 C与时间 t 的关系为C = 9.02-8.64/(1 + e(t-101.74)/9.54)。