论文部分内容阅读
无网格方法是近年来发展起来的一种新兴的数值方法,因其不需要网格,只需要节点信息,具有前处理简单、计算精度高等特点,已成为目前科学和工程计算方法的研究热点之一,也是科学和工程计算发展的趋势。
重构核粒子法是目前应用和研究比较广泛的无网格方法之一。本文针对目前重构核粒子法配点过多、计算量大等问题,提出了复变量重构核粒子法,然后将其应用于势问题、瞬态热传导问题、弹性力学、弹性动力学和弹塑性力学等,并研究了复变量重构核粒子法和有限元的耦合法。具体研究工作如下:
在重构核粒子法的基础上,本文提出了复变量重构核粒子法,推导了复变量重构核粒子法公式。与传统的重构核粒子法相比,复变量重构核粒子法的优点是在形函数的构造中采用一维基函数建立二维问题的修正函数,使得修正函数中所含的待定系数减少,从而有效提高计算效率。
将复变量重构核粒子法应用于势问题,提出了势问题的复变量重构核粒子法,推导了相应的计算公式。该方法的优点是可取较少的节点,在同等精度下,相比传统的重构核粒子法减小了计算量;而在同等节点分布时,相比传统的重构核粒子法提高了精度。
在稳态热传导问题的基础上,将复变量重构核粒子法应用于瞬态热传导问题的求解,结合瞬态热传导问题的Galerkin积分弱形式,建立了瞬态热传导问题的复变量重构核粒子法,推导了相应的计算公式。
将复变量重构核粒子法应用于弹性力学问题,对其控制方程的等效积分弱形式,采用罚函数法施加本质边界条件,建立了弹性力学的复变量重构核粒子法,推导了相应的计算公式。弹性力学的复变量重构核粒子法具有求解精度高、可消除体积闭锁现象等优点。
将复变量重构核粒子法推广应用于求解弹性动力学问题,由Galerkin积分弱形式得到离散系统求解方程,采用Newmark时间积分方案,并采用罚函数法施加本质边界条件,建立了弹性动力学的复变量重构核粒子法,推导了相应的公式。
在弹性力学的复变量重构核粒子法的基础上,在小变形假设的前提下,采用增量形式的复变量重构核粒子法进行插值,利用增量形式的应力应变关系表征材料的弹塑性本构关系,采用罚因子修正能量变分方程式以施加本质边界条件,数值实现中采用了Newton-Raphson增量迭代法,提出了基于增量本构关系的弹塑性力学的复变量重构核粒子法。算例表明,复变量重构核粒子法在求解弹塑性问题时具有稳定性好、收敛快的优点。由于复变量重构核粒子法的形函数不具有Kronecker Delta函数特性,因此边界条件的处理是复变量重构核粒子法实施中的一个难点。本文将复变量重构核粒子法和有限元法进行了耦合,提出了势问题和弹性力学的复变量重构核粒子法与有限元的耦合法。用该耦合法在进行势问题和弹性力学问题分析时不仅可以方便地施加本质边界条件,而且可以充分利用复变量重构核粒子法和有限元法的优势,弥补各自不足以提高计算效率。
为了证明本文提出的复变量重构核粒子法的有效性,本文编制了MATLAB计算程序,进行了数值算例分析。数值算例说明了本文方法的正确性和有效性。