高速运动飞片的法布里—珀罗干涉测量技术研究

来源 :中国工程物理研究院 | 被引量 : 2次 | 上传用户:talaima116
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文所关注的激光干涉测速技术主要用于测试在冲击波或爆轰波作用下各种材料样品的自由面速度随时间变化的过程。作为一种非接触测试技术,激光干涉测速技术已逐渐发展成为冲击波物理和爆轰物理研究领域的一种关键的测试技术,在武器设计、新材料科学、地球物理学等多个学科的实验研究中都有广泛的应用。本论文首先介绍了激光干涉测速的基本理论,然后介绍了基于光学谐振腔的选频特性利用薄腔法—珀干涉仪直接测量高速飞片所引起的多普勒频移从而获得其速度信息的设想,并根据此设想构建薄腔法—珀干涉测速系统的技术路线。最后描述了利用该项测试技术实际测量金属箔电爆炸驱动的Kapton膜飞片速度的实验并对实验结果进行了分析。 Fabry-Perot(简称F-P)光学共振腔与常用的光学滤光片有相似之处。一个F-P共振腔对不同频率的光具有不同的透过率,而且对其腔长进行微小调整(微米量级)即可显著改变法—珀光学共振腔的光谱响应特性。本论文中,利用自行编写的Matlab程序计算了法—珀光学共振腔的相关参数,并就相关参数对实验测试不确定度和测试范围的影响进行了分析,还利用压电陶瓷和温度控制两种方法来调整F-P腔长对所构建的F-P干涉仪进行了静态实验验证。实验中所使用的金属箔电爆炸驱动Kapton膜飞片装置可使被测飞片在0.1秒内由静止加速至3Km/s以上。理论分析和实验结果均表明:利用薄腔法—珀干涉仪对爆轰波驱动下高速运动的飞片的速度进行连续检测是可行的。 基于上述理论研究和实验结果,构建了一套以压电陶瓷实现调控的薄腔法—珀干涉测速系统。为了对薄腔法—珀干涉仪测速系统的测量不确定度进行评估,在实验中同时使用了相对较成熟的VISAR测速系统对电爆炸驱动Kapton膜飞片的速度进行了监测。实验结果表明,利用所组建的薄腔法—珀干涉测速系统与利用VISAR系统在相同条件下所取得的实验结果有很好的一致性。 该方法与传统激光测速方法相比,对电子学记录设备性能要求低,体积小,结构简单,成本低,在爆轰物理与冲击波物理实验研究中具有较好的应用前景。
其他文献
在以D-T为聚变燃料的惯性约束聚变中,带电粒子在等离子体中的能量沉积对维持聚变燃料的点火燃烧和实现靶丸高的能量增益有重要作用。本工作的主要目的是研究α粒子在D-T等离子体中的慢化过程以及这种慢化对D-T等离子体聚变燃烧行为的影响。主要工作有:用二元碰撞理论导出了带电粒子在等离子体中的能量变化率公式,阻止本领公式,以及两种各自处于热平衡状态的带电粒子之间的能量传递率公式等,研究了一个α粒子在等离子体
激光与等离子体相互作用中的各种不稳定性,必须通过对驱动激光采取时间和空间去相干等光束匀滑化措施来抑制,但光束的匀滑效果与驱动激光的带宽成正比。驱动激光带宽至少达到0.3~0.5nm时,才能有效利用光谱色散匀滑或空间感应不相干等技术来改善光束的近场和远场聚焦均匀性。另外就激光器本身而言,激光的宽频带有助于激光放大器的储能的提取,抑制激光器中的大口径光学元器件的横向受激布里渊散射带来的破坏,但是受KD
基于超辐射机理的相对论返波管利用短电子脉冲的超辐射效应产生纳秒/亚纳秒微波脉冲,其输出脉冲具有峰值功率高,脉宽窄和上升前沿快等优点,并能实现大于100%的功率转换效率。因此,对于超辐射返波管的研究具有非常现实的意义。 本文运用粒子模拟和实验研究相结合的方法对相对论返波管中的超辐射机理进行了系统的研究。文章的主要工作和贡献在于: 一、对慢波结构进行了高频特性分析,设计了一种X波段基于超辐
近年来,W.H.Hui等提出了统一坐标系,引入了一个自由参数h,将流体动力学各个物理量看成时间和拟粒子(pseudo-particles)的某种固有特征的函数,拟粒子以速度hq运动,其中q为流体质点运动速度。h=0时,为欧拉坐标系,h=1时为拉氏坐标系。自由度h使统一坐标综合了欧拉坐标和拉氏坐标的优点,弥补了二者的缺陷。统一坐标既可以避免Euler坐标法的过度数值耗散和动边界捕捉困难,也可以避免L
相变是冲击波物理研究的一项重要内容,金属锆(Zr)在较低冲击压力下会发生α→ω相变,但对锆的α→ω相变压力报道差别较大,相关实验数据有限,有较高的科学研究价值。本论文选择有一定杂质含量的国产纯锆(氧含量520ppm),通过实验与数值计算相结合的方法,开展了此冲击相变特性研究。 本文在轻气炮加载下,测量了不同冲击压力下锆的自由面粒子速度剖面,剖面内包含冲击相变与损伤断裂的复杂信息。研究发现:锆
在激光打靶实验中,高功率密度的激光束与物质的相互作用是一个复杂的过程。由于激光与物质的相互作用产生的高温等离子体可以发射大量的X射线,而且X射线容易从激光等离子体内部逃逸且不受电场和磁场的干扰,我们可以通过谱线分析获取等离子体电子温度、电子密度以及膨胀速度等参数,因此高精度的X光谱是实验分析的重要依据。晶体谱仪是高谱分辨的X射线谱诊断的重要仪器之一,分光晶体则是谱仪的核心。本文的主要研究工作是确定
采用正电子湮没寿命谱(Positron Annihilation Lifetime)和透射电镜(TEM)技术对比充氚和未充氚抗氢—2不锈钢(HR—2)相同热处理状态下的实验结果,研究了温度对不锈钢中He原子与缺陷的相互作用的影响。 根据氚在不锈钢中的扩散及衰变方程,计算了充氚不锈钢中的He原子的浓度以及分布。He在不锈钢中的总浓度为59.22ppm,在体相基本呈现均匀分布。根据经验公式计算了
本工作首先根据软旋转子模型,通过适当分带和安排能级的量子数,利用本征能量公式来拟合实验能级,获得哈密顿量参数再现了靶核的集体能级结构;然后利用哈密顿量波函数构造耦合结构,并用于耦合道光学模型计算。这样,可以有机地把描述核结构的软旋转子模型与描述散射问题的耦合道光学模型结合起来,并同时自洽地分析能级结构和散射数据。我们以硅,镁为例,计算分析了28,30Si和24,26Mg的能级结构和散射数据,并取得
论文以碳纳米管悬浮液和掺杂在石英玻璃中的碳纳米管以及氧化钒薄膜为研究对象,对其在激光辐照下的光限幅行为和机理进行了一系列的实验研究,分析了影响光限幅性能的各种因素。结合非线性光学理论和米氏散射理论对碳纳米管的光限幅机理进行了解释,初步建立了碳纳米管非线性散射光限幅的简化物理模型;对氧化钒薄膜在连续激光辐照下的动态光限幅行为开展了实验研究,并进行了定性分析。论文主要包含下列研究内容: 1、碳纳
硅纳米结构已成为现代集成电路、探测器和各种传感器的核心部分而广泛应用于微处理器、高速通信、便携式电子设备、微光电器件、卫星或其它空间应用、武器控制系统等。为获得更优化和稳定的器件工作特性,深入认识器件的失效机制,对微尺度材料和器件中的超快(电-声子散射过程主导的时间领域)能量转化和输运过程的研究逐渐成为国际上的热点,但国内对这一领域的研究还相对滞后。 论文以Boltzmann输运方程为理论基