超薄疏松聚酰胺纳滤膜的制备及性能研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:rr_uu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
膜技术为缓解全球水危机提供了经济绿色的方法。纳滤凭借低能耗和高水盐分离效率而备受关注。由界面聚合技术制备的聚酰胺分离膜和超滤支撑膜组成的复合膜是商用纳滤膜的基准结构。为了提高分离效率,研究者在聚酰胺分离膜超薄化和疏松化的独立调控方面都取得了重要进展。但在聚酰胺分离膜中同时耦合调控这两种结构仍是一项巨大的挑战。本研究分别通过氢氧化钠后处理水解法和石墨烯量子点调控界面聚合法成功制备出了超薄疏松聚酰胺(ULPA)纳滤膜,并表现出优异的渗透性和选择性。具体研究内容如下:以哌嗪(PIP)为水相单体,均苯三甲酰氯(TMC)为有机相单体,首先通过无支撑界面聚合制备超薄聚酰胺分离膜,然后利用OH-水解酰胺键构建疏松结构,进而获得ULPA分离膜。PIP在水-有机界面上的均匀分布和扩散加速了界面聚合的自密封和自愈合,促进形成厚度为17 nm、孔径狭窄(孔半径≈0.348 nm)的超薄致密聚酰胺膜。进一步利用OH-催化水解酰胺键,PA膜的孔径可扩大到0.448nm。在最优条件下,ULPA复合膜的纯水渗透性达到29.3 L m-2 h-1 bar-1,相比于水解前提高了160%,同时保持了高的Na2SO4截留率(99.1%)和Cl-/SO42-的选择性(91.8)。利用石墨烯量子点(GQDs)作为准分子尺度调控剂,通过调控界面聚合扩散过程一步构建ULPA分离膜。GQDs兼具羟基、羧基和量子尺寸,可以通过氢键作用、静电吸引和空间位阻的方式减缓PIP的扩散速率,促进形成18.3~5.5nm之间的超薄结构。此外,GQDs在聚合过程中被嵌入聚酰胺基质中,通过创造大量的界面空隙构建疏松结构。在最优条件下,ULPA复合膜的水盐分离性能超越了传统聚酰胺膜的Upper-bound上限,表现出优异的水渗透性(32.1 L m-2 h-1 bar-1),高的Na2SO4截留率(99.6%)及超高的Cl-/SO42-的选择性(205.8)。这种简单有效构建ULPA纳滤膜的策略为设计先进的分离膜开辟了一条新途径。
其他文献
挥发性有机化合物作为一类常见工业污染物对环境和人类健康都有危害,二甲苯就是其中典型的一种。热催化氧化法因其高效性与操作温度较低的优点被认为是极具发展潜力的VOCs处理方法。传统的热催化研究很少涉及VOCs在催化剂上的动力学反应过程,对催化氧化反应过程的遵循的机制亦不甚明确。本课题首先应用简便的凝胶溶胶法制备了Co-Mn复合金属氧化物催化剂Co Mn2O4,主要研究二甲苯在Co Mn2O4催化剂上深
学位
丙炔醇是一种被广泛用于医药和农药行业中的重要中间体,丙炔醇-水常压下是共沸体系,用普通精馏方法无法将其分离,工业上制备丙炔醇的过程中,需要通过特殊精馏来进行丙炔醇-水的分离。本文拟采用萃取精馏的方式对丙炔醇-水进行分离,为此,通过以下三方面基础研究,为丙炔醇-水体系的分离设计提供基础数据,优化最佳分离方法,为实际生产提供理论依据。首先利用高溶解性、高选择性、沸点适宜等萃取剂基本筛选原则初步甄选出五
学位
本文首先通过双铝法自制了拟薄水铝石粉(PB),采用海藻酸铵辅助成球法制备了球形氧化铝颗粒。随后通过酸碱化学蚀刻和表面原位生长水滑石的方式,对球形氧化铝颗粒进行了表面改性,并将表面改性后的球形氧化铝作为载体,制备了Pt/Al2O3催化剂。利用XRD、SEM、BET、TEM、NH3-TPD、ICP、EDS、XRF、CO-TPD与TG等方法,探究了PB粉水热扩孔处理和球形氧化铝表面改性对载体的晶型、表面
学位
1,3-丁二烯是一种重要的化工原料,目前主要来源于石脑油裂解制乙烯过程的C4馏分抽提。然而,随着乙烯裂解原料轻质化,1,3-丁二烯的原料来源逐渐减少。因此,乙醇制1,3-丁二烯(ETB)的路线近年来成为研究热点。在ETB过程中,杂原子分子筛催化体系因其具有规则的孔道结构、金属杂原子的Lewis酸位点,展现出较好的催化活性。本论文以十二元环β分子筛为基础,构筑具有Zr金属位点的杂原子分子筛,探究杂原
学位
2,3,5-三甲基苯醌(TMBQ)作为合成维生素E的关键中间体,其合成工艺备受行业关注,目前我国主要以2,3,6-三甲基苯酚(TMP)氧化法制备TMBQ。原料TMP合成路线长,价格高,导致维生素E生产成本较高。1,2,4-三甲基苯(TMB)为石油炼制所得C9芳烃产品,其来源丰富、价格低。以TMB为原料制备TMBQ原子经济性高。本文以TMB为原料,在均相和非均相体系下寻找适宜的反应条件及合适的催化剂
学位
Bi2O3是一种可见光响应型半导体光催化材料,具有光催化性能稳定、成本低等优点,但是禁带宽度较大、光催化活性不高等问题限制了其应用。为了拓宽Bi2O3的光响应范围并提高其量子效率,本文采用两步水热法成功构建合成了Bi2O3/PANI新型异质结可见光光催化剂。利用X射线衍射仪、扫描电子显微镜、透射电子显微镜、傅里叶红外光谱、X射线光电子能谱、荧光光谱、紫外-可见光漫反射光谱等方法,对Bi2O3/PA
学位
自工业革命以来,随着化石燃料的燃烧,大气中的CO2的含量在逐年增加,由此引发了诸如温室效应,能源枯竭等一系列的环境问题。电化学还原CO2由于可以在温和的反应条件下,利用电能将CO2转变成具有更高附加值的化学燃料与化学品,而成为目前解决过量排放CO2再利用最具前景的技术方法。本论文制备了纤维多孔状Zn和Ag/ZIF-8两个系列的催化剂,并将它们应用于电还原CO2反应中,研究了催化剂材料的电还原性能,
学位
通过对锻造316LN奥氏体不锈钢进行轧制随后进行不同加热温度的热处理,获得具有不同晶粒尺寸的316LN奥氏体不锈钢。研究了细晶316LN奥氏体不锈钢在不同温度下的单轴拉伸力学性能。通过低周疲劳试验,研究了细晶316LN奥氏体不锈钢的低周疲劳性能及失效机理,并对细晶316LN奥氏体不锈钢进行了低周疲劳寿命预测。通过棘轮疲劳试验,研究了不同平均应力下细晶316LN奥氏体不锈钢的棘轮疲劳性能,阐明了平均
学位
聚乙二醇二丙烯酸酯(PEGDA)凝胶在药物递送和组织工程中具有广阔的应用前景。因此,PEGDA聚合的研究具有重要意义。本论文研究了PEGDA在532 nm激光下通过不同的引发体系进行光聚合及其高活性引发体系用于制备凝胶,具体内容如下:首先研究了2’,4’,5’,7’-四溴荧光素二钠盐(EY)引发的532 nm的光聚合。为了提高聚合速率,使用EY,三乙醇胺(TEOA)和六氟磷酸二苯基碘鎓(DPI)作
学位
绝缘材料在电气行业有着广泛应用。随着工况条件逐渐复杂以及需求的多样化,人们对绝缘材料性能的要求也就越来越高。陶瓷材料制备的绝缘涂层具有耐高温、理化性能稳定、附着力良好的特点。本文分别在添加有纳米六方氮化硼(h-BN)和纳米氧化铝(Al2O3)粉体的溶液中,采用电泳沉积法制备出了氮化硼以及氧化铝陶瓷绝缘涂层。采用XRD、SEM、FTIR等分析技术,对所制备陶瓷绝缘涂层的成分和结构进行了表征,研究了所
学位