论文部分内容阅读
随着我国航天事业的高速发展,各类空间探索卫星在气象预报、灾害预防、环境保护、海洋观测、深空探索以及卫星通信等多方面的应用越来越广泛,大量的空间探测数据需要实时地传输到地面。因此,当今社会对星地通信的传输速率提出了更高的要求,尤其是轨道高度较低、传输延时较短的低轨星地激光通信,预计未来低轨星地下行通信速率将达到40Gbps甚至100Gbps,无中继的低轨卫星直接对地面站激光通信是解决星载大数据下行的必要手段。然而,在无中继的低轨卫星与地面站之间的直接激光通信链路中,受自由空间损耗、大气湍流效应以及收发机损耗等因素的影响,接收到的光信号十分微弱,这使保证足够大的功率预算成为可靠的低轨星地间无中继直接激光通信(简称低轨星地激光通信)的关键所在。目前基于强度调制直接检测(intensity modulation direct detection,IM/DD)的Gbps量级星地激光通信虽然具有可用频谱宽、无需频率申请、抗干扰性强等诸多优势,但因其直接检测所决定的低接收机灵敏度,当信息速率提升到40Gbps、100Gbps时,功率预算难以满足系统要求。而由于采用信号光与本振光的混频,相干光通信系统的接收机灵敏度通常高于IM/DD系统20dB以上,相干光通信成为实现1 00Gbps级低轨星地通信的有效技术手段。因此,结合相干通信技术特点制定100Gbps级低轨星地相干激光通信系统实施技术方案并设计相关损伤抑制的数字信号处理(Digital Signal Processor,DSP)算法对支撑100Gbps级低轨星地激光通信系统研制很有必要。同时,尽管相干检测带来了高接收机灵敏度的优势,但是由于无中继空间信道损耗严重,仅相干检测仍不能满足100Gbps级低轨星地激光通信高功率预算的要求。如何成本有效地提高相干光通信系统的接收机灵敏度并抑制大气湍流效应是低轨星地激光通信的关键技术难题之一。本论文针对高速低轨星地相干激光通信系统关键技术难题开展了深入的研究,主要研究工作及创新点如下。1、针对M/DD调制解调方式难以满足100Gbps级低轨星地激光通信系统的功率预算需求以及大气湍流效应严重恶化系统性能的问题,本论文设计了一种基于星座整形和分集接收的偏振复用-16星座正交幅度调制-相干光正交频分复用(polarization multiplexing-16 quadrature amplitude modulation-coherent optical-orthogonal frequency division multiplexing,PM-16QAM-CO-OFDM)下行 112Gbps/上行 28Gbps低轨星地激光通信系统方案以及基于训练序列的DSP损伤补偿算法。基于相位屏对大气湍流的模拟,搭建了下行112/上行28Gbps PM-MQAM-CO-OFDM低轨星地激光通信仿真平台,对所提系统方案及DSP算法性能进行了仿真分析。仿真结果表明,所设计的112/28Gbps PM-16QAM-CO-OFDM低轨星地激光通信系统方案在下行“星座整形并4分集接收、发射功率1 W(30dBm)、接收孔径31.8cm、发散角30urad”下,上行“星座整形、发射功率为3W(34.8dBm)、接收孔径20cm、发散角15urad”下,能够满足系统功率预算要求,且在强湍流条件(大气折射率结构常数Cn2=6.5×10-14m-2/3)下,仍有下行3.2dB/上行2.0dB的功率富裕度。2、针对高速低轨星地激光通信系统改进接收机灵敏度的迫切需求,尤其是CO-OFDM调制方式对相位噪声敏感的问题,本论文提出了一种相位均匀分布的圆形QAM结合概率整形的星座整形机制。首先将星座图上每圈的星座点均匀分布,以最大化相邻星座点的相位间隔;同时为最大化平均发射功率受限下的最小欧氏距离(minimum Euclidean distance,MED),对圆形16/32QAM星座各圈之间的半径比进行了优化设计。其次,为进一步提高平均功率受限下的MED,对圆形16/32QAM星座进一步进行概率整形。所提的圆形QAM几乎不增加CO-OFDM系统实现复杂度,而概率整形增加的DSP算法复杂度低于5%。经仿真验证,相同信息速率下,基于星座整形的14 GBaud PM-16/32QAM-CO-OFDM低轨星地激光通信系统在1dB功率代价下线宽符号周期乘积Δv·Ts容忍度分别提升12.5%和50%、接收机灵敏度分别改善了约1.2dB和2.2dB。同时,利用空间光调制器模拟大气湍流搭建了离线实验平台,实验验证了所提星座整形机制的有效性。3、在高速下行低轨星地激光通信分集接收系统中,由于不同分集接收支路经历了相互独立的大气信道,不同分集接收支路之间相位不同步,存在相对相位偏移(relative phase offset,RPO)导致的支路间干扰,降低分集增益。本论文在理论分析分集路数、大气湍流强度以及接收孔径对分集增益影响的基础上,针对上述问题提出了一种基于群定时同步及分集支路相位校正的共享本振光源单输入多输出(single input multiple output SIMO)分集接收方案。其中群定时同步通过寻找各个接收支路测度函数和的峰值作为同步起点,消除各个支路之间由定时同步误差引入的相对延迟;而分集支路相位校正则在补偿定时同步误差后,利用共享本振光源分集接收中由激光器频偏、线宽引入的相位噪声在各个支路相同的特点,以信噪比最大的支路信号作为参考信号,校准其余支路信号与参考信号之间的相位差。112Gbps PM-16QAM-CO-OFDM下行低轨星地激光通信系统仿真结果表明,所提的群定时同步和分集支路相位校正机制能有效抑制各个接收支路之间的RPO。不同条件下仿真获得的分集增益如下:在FEC门限为3.8 ×10-3下,接收孔径为31.8cm时,采用4分集接收在弱、中、强大气湍流状态(大气折射率结构常数Cn2分别为6 × 10-16m-2/3、5×10-15m-2/3、6.5 × 10-14m-2/3)下,接收机灵敏度分别改善了2.0dB、10.3dB和8.1dB。