【摘 要】
:
情绪压力会给人们带来一系列的负面影响,在心理学和医学上主要表现为紧张、不适、焦虑和抑郁等。随着生活节奏的加快,压力给人带来的生理和心理问题日益显著,已经严重威胁人们的健康。因此进行情绪压力识别研究具有重要意义。近年来,多模态情绪压力识别研究取得了一定进展,但仍然存在着以下的问题:(1)多模态情绪压力识别研究数据集不够丰富;(2)多模态特征表示较为简单;(3)多模态信息融合不充分;(4)模态数据可能
论文部分内容阅读
情绪压力会给人们带来一系列的负面影响,在心理学和医学上主要表现为紧张、不适、焦虑和抑郁等。随着生活节奏的加快,压力给人带来的生理和心理问题日益显著,已经严重威胁人们的健康。因此进行情绪压力识别研究具有重要意义。近年来,多模态情绪压力识别研究取得了一定进展,但仍然存在着以下的问题:(1)多模态情绪压力识别研究数据集不够丰富;(2)多模态特征表示较为简单;(3)多模态信息融合不充分;(4)模态数据可能会缺失进而影响模型性能。本文针对上述问题,选取面部表情和脉搏信号两种模态进行情绪压力识别研究,主要工作如下:(1)本文建立了一个多模态情绪压力数据集,利用心理学实验范式设计情绪压力诱发实验,采集了60名大学生的面部表情和脉搏信号数据。(2)本文提出了一种基于多尺度注意力和张量融合的多模态情绪压力识别方法。现有的压力识别算法的特征多为手工提取,且特征融合不充分。本文利用卷积神经网络提取多模态数据的特征,结合多尺度注意力机制丰富特征表达,并突显与压力相关的信息。引入基于低秩分解的张量融合技术,对不同模态的向量特征进行表示并融合,形成高阶张量特征,学习模态内和模态间的信息,并利用低秩分解加速融合过程。实验结果表明,本文所提出的情绪压力识别方法表现出了良好的性能,识别准确率达到87.68%。(3)本文提出了一种基于时间注意力的多模态情绪压力识别方法。情绪压力在时间上是一个动态变化的过程,本文提出了基于Bi-GRU的时间注意力机制用于提取数据的时序特征,并实时计算各模态信息在各时刻的注意力分布,捕捉压力在时间上的变化。实验结果表明,加入时间注意力机制后,模型的情绪压力识别准确率达到88.83%。(4)本文提出了一种基于特权学习的多模态情绪压力识别方法。为解决因脉搏数据在实际情况中较难获取而导致的模态缺失的问题,本文出了一种多模态特权学习算法,利用多模态(面部表情+脉搏信号)模型协助单模态(面部表情)模型训练。使多模态模型因缺失脉搏信号数据而退化至单模态模型时还能正常工作。实验结果表明,使用多模态特权学习算法后,模型识别准确率相比于只使用面部表情数据训练的模型提高了1.5%。本文建立了多模态情绪压力数据集,在多模态表示、融合、协同学习问题方面进行了一定的探索,有利于情绪压力识别技术应用到实际生活中。
其他文献
修复材料与人体的力学适配是骨修复,尤其是大段骨缺损修复过程中的重要标准。构建具有良好力学性能和促成骨性能的多孔结构修复支架,能够有效实现骨组织修复。生物陶瓷与天然骨组织的无机成分组成相似,是一种极佳的骨修复材料。然而,目前基于生物陶瓷材料制备的骨修复支架大多存在力学性能不足的问题,且目前的解决方法如调节成分或表面改性等,能够起到的作用十分有限。因此,从支架的结构设计出发,通过结构力学手段实现增强成
挥发性有机物(Volatile organic compounds,VOCs)是形成臭氧(O3)和细颗粒物(PM2.5)的重要前体物,其排放对人体健康及大气环境造成严重危害。因此,需要利用科学有效的技术对VOCs的排放进行控制。催化氧化是目前治理VOCs最有效的技术之一,研发高效、稳定、低成本催化剂是该技术的关键。金属氧化物催化剂由于其相对贵金属催化剂具有更低的成本和更高的催化稳定性已实际应用于V
快速发展的IoTs和传感器技术使得安全管理变得越来越便捷化、智能化,实时的安全监测能够保证人员在工作时得到更好的保护。多功能的可穿戴个人防护设备因其便携性和保护性成为新一代安全监测设备。但是传统可穿戴防护设备装配的传感器过于依赖电池供电,巨大的能耗和复杂的线路连接限制了其进一步发展。自供电的NG传感器提供了一条解决能耗的绝佳思路,但是其易燃性限制了在高温场景下的应用。因此,本文基于新一代可穿戴防护
近年来,零售电商的高速发展与普及使网络购物成了人们如今的主流消费行为,客户对所购商品交付时限的要求越来越高。为缩短客户订单完成时间,需要仓储端对订单进行快速反应。拣选作业是实现高效仓储作业最重要的环节,一个仓库的总运营成本中大约有50-75%是由拣选作业构成的,所以拣选作业的效率对电商企业维持和提高客户满意度的影响至关重要。同时,零售电商订单具有品项多、批量小、批次多和响应快的特点,需要专门设置一
直立墙前波高空间分布指波浪入射直立墙后,直立墙前各空间位置(坐标)的波高分布情况。当波浪传递至近岸时,由于地形变化和建筑物阻挡,波浪发生折射、反射、绕射以及破碎现象,反射在其中是被讨论的重点对象。实际波浪往往是不规则而具有多向性的,因此相比于规则波,单向不规则波和多向不规则波更符合天然波浪的特性。直立墙式建筑物作为港口外堤建筑物的重要表现形式,在近海、近岸工程布置中较为常见。因此在直立墙前沿水域的
多金属氧簇是一类单分散、结构明确、功能独立的纳米粒子,由于其丰富的分子拓扑结构、多样的物理和化学特性以及可精确修饰的表面结构,多金属氧簇及其衍生物已在多领域得到应用,如催化、电化学、能源、生命科学等。然而多金属氧簇及其衍生物的无机物特性,如柔韧性差、可加工性差等限制了这类材料的进一步应用。聚合物作为一种以柔韧性、延展性、可加工性以及对多种气体/溶剂高相容性为优势的物质弥补了多金属氧簇的不足。因此,
近年来,以氮化镓(GaN)为代表的III族氮化物,已成为制备紫外(UV)探测器件的理想材料。由于纳米材料具有与体材料不同的新颖特性,GaN基半导体材料的研究也转向了材料及器件的纳米化。然而,GaN纳米材料可控制备困难,有效单位产量低,器件性能有待提升等难题制约着GaN基UV探测器的发展。基于此,本论文围绕GaN纳米材料基光电探测器在材料可控生长和载流子调控的两大难题开展研究工作,成功制备了高性能的
随着芯片先进制造技术的蓬勃发展,电子产品也随之趋于小型化、高度集成化、移动化、高频化和低功耗的特点。与此同时,电子产品的电磁干扰问题越来越严重。常用的电子产品的电磁干扰分析方法为传统的全波仿真方法。然而全波仿真法从技术方面,需要知道电子产品的具体内部结构,对于复杂的电子产品来说,其涉及多个尺度(PCB级-元器件级-芯片级)的电磁辐射耦合,其仿真难度大,需要耗费的计算资源多和计算时间长;从商业方面,
钢铁在各行各业中具有广泛的用途,包括但不限于建筑、航空航天、机械、汽车。钢铁表面缺陷不仅会影响钢铁表面外观,还会损害耐磨损性、耐高温性、耐腐蚀性和抗疲劳强度。大量的钢铁表面缺陷会导致客户的拒绝,对生产企业来说意味着重大的经济损失,因此,检测钢铁表面缺陷对提升钢铁生产质量非常重要。本文首先介绍了钢铁表面缺陷检测的研究背景和国内外表面缺陷检测的研究现状,指出了已有的钢铁表面缺陷检测方法——基于统计的方
钢框架结构是地震区常用的抗震结构体系,而传统刚接柱脚(埋入式、外包式)在罕遇地震下会发生严重损伤而难以修复,影响结构乃至城市的震后功能快速恢复。为解决传统柱脚节点的不足,相关学者提出基于预应力自复位思路的可恢复功能钢柱脚节点,但仍存在以下问题难以解决:1)柱脚节点具有明显的双向变形和受力特征,但现有的可恢复功能柱脚节点的双向工作性能仍未被充分了解,双向地震下的设计理论尚未完善;2)预应力钢筋弹性变