基于大平板热管耦合风冷散热的动力电池组模型及温度控制研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:qq414363439
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于石油等化石燃料的紧缺及对环境问题的影响,新能源汽车在各国得到发展。目前市场上较普遍的新能源汽车包括四大类型:纯电动汽车、混合动力电动汽车、燃料电池电动汽车和其他新能源汽车。其中,纯电动汽车具有能量利用率高、零排放等优点,近几年在世界各国得到迅速发展。而与同样大小的铅酸电池、镍镉电池、镍氢电池相比,锂离子电池电量储备最大,重量最轻、寿命最长、充电时间最短、无记忆效应,因此成为极有潜力的新一代二次电池产品。锂电池温度保持在20℃~45℃,可以发挥其最佳工作性能。过高的温度会影响电池的容量,减少使用寿命,甚至发生热失控而燃烧、爆炸的危险;而温度不均匀性也会引发电池包局部形变。同时,由于电池内部热阻的存在使得内核温度相较于外表面更高,而电池内核的温度难以直接测量,发生热失控的风险更大。因此需要对电池内核温度进行监测与把控,并保证电池组的温度一致性。本文利用基于大平板热管耦合风冷散热的方式对三元锂方形电池组进行热管理,主要内容如下:采用一阶RC电路模拟电池放电特性,开路电压、欧姆内阻、极化内阻通过实验及最小二乘法进行辨识,构成等效电路模型。将方形电池分为电池内核、电池底面及大平板热管散热端三部分,考虑散热过程包括电池内部导热,热管内部换热及热管散热端的对流散热,建立热平衡方程即基于大平板热管散热的电池组热模型。设计PTC(电加热片)加热模块,通过实验方法测定不同温度下大平板热管的换热系数。电路模型将计算得到的产热量传递给热模型,热模型得到产热量后计算得到电池内核及表面温度传递到电路模型,从而确定电路模型中的参数,实现电热模型耦合。搭建了一种基于大平板热管的高效高均温性电池散热三维模型,电池组置于大平板热管上,底部辅以风冷散热。利用脉冲电流法(HPPC)测得电池在不同温度及SOC下的内阻,根据Bernardi模型计算得到电池单体产热量,将产热模型编写成UDF以电池内热源的形式导入ANSYS-Fluent中。同时,搭建了基于大平板热管的电池散热实验系统,在不同环境温度、不同放电倍率工况下,验证了模型的准确性。进一步通过仿真计算了在不同冷却风温、不同冷却风速及大平板热管散热端布置不同翅片数量下,电池组的各项温度特征值。建立基于大平板热管散热的电池组模型预测控制器(MPC)。输入目标内核温度,通过调控风道入口的风速将电池组温度控制在目标温度附近。将CFD模型与Simulink搭建的电热耦合模型结合,进行ANSYS-MATLAB联合仿真。在一定环境温度、冷却风速情况下,对电池进行放电仿真计算,设定合适的时间间隔,将计算得到的电池表面及内核的温度传递到MPC中。MPC预测一定时段内电池的温度变化,计算得到最优的风速将其反馈到ANSYS中,对仿真计算中的电池温度进行在线的控制。并在不同工况下比较定风速条件与利用MPC对电池散热的影响,验证了模型预测温度控制器的效果。
其他文献
模块化机器人因其具有重构性好、可维护性高、设计周期短与设计成本低等优点,日渐成为国内外学者的研究热点。模块化关节作为机器人重要组成部分,其性能好坏直接影响着机器人整体性能表现。普通的模块化关节主要采用整体式谐波减速器作为传动部件,关节的成本、尺寸、设计都会受到谐波减速器的限制,不利于关节集成度的提高与成本的降低。此外,谐波齿轮传动的引入对关节的使用寿命与控制效果有着直接的影响,开展基于谐波齿轮传动
数控滚齿机床是传动关键零部件齿轮的工作母机,其能源消耗总量和二氧化碳排放量巨大,具有较大的节能减排潜力。能耗和碳排放的准确预测是研究如何优化的重要前提,然而现有研究大多从试验角度出发构建预测模型,随着人工智能的发展,国内外学者发现机器学习模型往往表现出更好的预测性能。但我国大多数普通企业尚未实现车间联网和制造数据的自动采集,使得机器学习方法的应用受到阻碍,如何从机器学习的角度出发构建预测效果更优的
随着现代工业技术的不断发展,对齿轮传动系统性能的要求也越来越高。作为特种车辆的传动系统,不仅需要在高速重载等极限工况下运行,也需要在其他转速转矩范围和复杂激励工况下平稳运行。因此,需要合理地控制齿轮传动系统的振动噪声,提高系统的稳定性和可靠性。齿轮修形是提高齿轮传动性能的主要途径之一,通过修形能减少齿轮的啮合冲击,改善载荷分布,从而降低系统振动响应。但相同修形参数在不同激励频率与转矩下会有不同修形
铜/钼/铜(Cu/Mo/Cu)层状复合板具有可调节的热膨胀系数和热导率、良好的力学性能,在电子封装材料领域有很好的应用前景。通过合理的轧制工艺制备铜钼复合板以及建立其组织与性能的关系一直是研究的难点。本文选择纯铜和纯钼作为原材料,采用不同的轧制工艺制备了铜/钼/铜复合板,研究了复合板的界面演变、协同变形规律以及由于协同变形引起的组元金属组织不均匀性。通过拉伸、热膨胀以及导热试验研究了复合板的力学性
数控机床是制造业的工作母机,是集机电液控为一体的复杂产品,国内数控机床产业主要是中低端机床产品,数控机床质量不高是制约数控机床走向高端的主要技术壁垒。数控机床质量分析存在多学科交叉、质量特性数量庞大且关系复杂问题,很难进行精细化控制。元动作单元是数控机床的最小运动单元,分析粒度适中且相互独立,其质量的优劣能直接体现数控机床整机功能和性能,而质量是通过质量特性进行表征的,因此对元动作单元质量特性进行
钢铁企业生产过程中伴随着能源消耗和环境污染,烧结作为钢铁生产的重要步骤,成为了能源消耗和环境污染的重要关注工序。随着近期碳达峰和碳中和日程的确定,烧结过程中的节能减排问题也被提上了技术开发日程。本文系统研究了原料条件、工艺参数及某些特定技术对铁矿石烧结过程CO排放影响规律,并提出了减少烧结CO排放的相关措施。论文的研究内容和结论如下。(1)在烧结制粒过程中,保证烧结原料具有良好透气性的前提下,含水
目前,随着笔记本电脑、手机等便携式移动设备的需求增加,对清洁、高效的电源设备提出了更高的要求。直接甲酸盐燃料电池(Direct formate fuel cell,DFFC)以其独有的室温启动、稳定高效、无毒害、燃料便于储存与运输等优势,受到了国内外学者的广泛关注。但DFFC结构中昂贵的离子交换膜与高载量的贵金属阴极催化剂使得DFFC成本居高不下。近年来,大量研究表明廉价的碳质催化剂对氧还原(Ox
作为21世纪的绿色工程材料,镁合金拥有高比刚度、高比强度、可回收利用、优良的电磁屏蔽性能以及资源丰富等优点,在航空航天、汽车工业、3C产品以及国防等领域广受青睐。但镁合金因自身化学性质和物理结构存在一些致命短板,如绝对强度低,室温塑性差,高温性能较差,进一步限制了镁合金在工业和商用产业上的大规模应用。因此提高镁合金室温和高温强度,改善镁合金塑性及加工成形能力逐渐成为材料学者的目标。根据国内外研究报
热电转换是分布式发电及废热利用中不可或缺的环节,而热电材料是实现热能向电能直接转换的关键材料,热电性能对热电材料的转换效率具有决定性作用。目前,碲化铋是室温下性能最好的热电材料,碲化铋纳米化有助于进一步提高碲化铋材料热电性能。但纳米碲化铋的制备周期长,制备过程中涉及强还原剂及有毒溶剂污染环境。本文以碲化铋为研究对象,采用溶剂热法制备碲化铋纳米片,并将纳米碳化钛薄片引入碲化铋纳米片基体,研究了碲化铋
贵金属及其合金由于具有良好的导电导热、化学稳定性以及合适的硬度与弹性,早期的电接触材料主要以贵金属及其合金为主。随着工业的快速发展,世界各国对贵金属消耗激增的现象日渐重视,低成本、高性能的层状复合电接触材料受到人们的关注。贵金属/廉金属层状复合电接触材料兼具贵金属优良的电接触性能以及廉价金属优秀的机械性能和导热性能,具有广泛的应用前景。本课题利用连轧加中间退火技术将C7701基带与AgPd30复层