2024铝合金喷丸成形壁板疲劳性能研究及数值模拟

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:aq13
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
喷丸成形作为机翼壁板首选加工方法具有无模成形、成形精度高、提高疲劳性能等诸多优点,但其在表面产生的弹坑过大则容易造成应力集中和粗糙度增加,恶化表面性能。超声强化可以对喷丸成形壁板进行精密校形,喷丸强化后进行超声强化可以进一步提高疲劳性能且对粗糙度的影响相对较小。如何量化这些喷丸工艺对于疲劳性能的影响并得出复合工艺中的最优参数成了飞机壁板喷丸加工处理中亟需解决的问题。本文采用喷丸成形、喷丸强化、超声强化复合工艺对壁板细节疲劳额定值(Detail Fatigue Rate,DFR)试样件进行表面强化,研究不同喷丸参数对于疲劳性能的影响。通过ABAQUS建立随机喷丸有限元模型研究喷丸参数对于试样表层性能的影响,并利用ABAQUS、FESAFE软件建立预测DFR试样件疲劳寿命模型,为后续喷丸参数优化以及疲劳寿命预测提供指导。主要研究内容如下:对2024铝合金DFR基准和截止试样进行喷丸成形、喷丸强化、超声强化处理并进行疲劳试验,测量不同基准试样残余应力、显微硬度、粗糙度的变化,研究不同坑径、超声强化、二次强化等因素对于试样疲劳寿命以及DFR性能的影响。研究发现喷丸成形试样表面坑径大小在1.4 mm时疲劳性能最好,而超声强化和二次强化均能提高试样疲劳性能,超声强化提升作用更为显著。采用ABAQUS离散颗粒单元法建立的随机喷丸有限元模型进行不同喷丸参数的喷丸模拟,模拟结果表明随着喷丸速度增加残余应力场深度及最大残余应力深度均增加,喷丸覆盖率的增加导致表层残余应力值增加,残余应力影响层深度不变,而随着喷丸成形坑径的增加,残余应力场深度随之增加,最大残余应力不改变。将模拟结果与试验研究结果对比发现两者基本一致。采用ABAQUS和FE-SAFE结合的有限元方法对基准和截止试样件进行寿命预测,并把模拟寿命与试验寿命进行对比,发现模拟与试验结果基本一致,证明该方法的有效性。利用该模型对不同喷丸速度和覆盖率进行疲劳性能对比,发现喷丸速度在60 m/s、坑径1.4 mm、覆盖率在300%时疲劳性能较好。
其他文献
基于智能结构的变体飞机是未来飞行器发展的重要方向之一,多稳态变体结构具有保持多种稳定状态的能力,使其能够根据实际任务需求产生自适应变形,并且不需要额外的能量输入就可以维持在稳定状态下,是一种保证未来变体飞行器具有轻量化和低能耗特性的理想智能结构。但是国内外的研究现状反映出目前的多稳态变体结构仍存在承载强度低、稳定性差等方面的问题。基于此,本文提出了一种基于薄壁圆柱壳内压膨胀效应的新型多稳态变体结构
世界各国越来越重视航空发动机技术的发展,并将航空发动机的研究水平作为衡量一个国家工业水平的高低。航空发动机的制造非常复杂,国内外优质的、完整的发动机制造技术仅掌握在少数发达国家手中。对于航空发动机来说,叶片加工占整个航空发动机制造工艺流程的30%以上工作量。目前,国内外常采用电化学的加工方式对其进行加工,但电化学加工后的叶片进排气边缘型面精度不高,残余大量不规则形状余量。为解决电化学加工叶片工艺流
航空发动机转子主要采用多级盘、盘鼓连接的形式,具有尺寸大、级数多等特点。装配是航空发动机制造过程中的重要一环,是影响整机性能的关键环节,若装配不平衡量不能满足实际需求,在工作过程中会引起较大的机械振动,严重影响航空发动机的工作性能,直接影响航空发动机的使用寿命。因此,研究装配过程中转子不平衡量的变换机理,在转子装配的过程中针对不平衡量超差等问题做出合理的调整对于保障装配质量、控制整机振动十分重要。
航空发动机转子作为发动机的关键部件之一,其装配后的精度程度对于实际工作状态有着重要的影响。在装配过程中,由于零件的制造误差的不确定性以及受力后零件发生变形,转子的装配精度很难得到保证,另外还会出现“曲轴型”、“弯弓型”转子装配的现象,导致航空发动机转子装配的一次性成功率低,需要通过人工试错法、修配法多次装配。本文提出了一种基于机器学习的航发转子装配精度预测与优化技术,融合人工智能算法和优化算法,实
运载火箭作为空天运输的主要载体,是我国在航空航天领域发展的主要方向之一。目前,运载火箭主要采用捆绑式结构,即助推火箭捆绑在火箭芯级,以提供用于提升动力和控制姿态的推力,推力的剧烈变化会对芯级产生较大冲击,而芯级属于硬壳结构,所以当助推火箭的推力有偏差时,将会影响火箭姿态控制,过大的推力偏差甚至会造成芯级的局部屈曲,最终造成破坏。因此,掌握芯级结构的载荷对提升火箭发射成功率、提高运载能力性价比和火箭
碳纤维增强热塑性复合材料(CFRTP)因具有轻质、高强、耐冲击等优良力学性能,已成为高端装备减重增效的优选材料。为满足高端装备构件承受巨大、复杂、多变载荷的要求,其在连接部位仍需与铝合金(Al)等金属材料共同使用。实现CFRTP/Al的可靠连接是保证此类结构服役性能的关键,激光连接技术利用CFRTP所具备的可焊接性,可实现CFRTP/Al快速、非破坏连接,是适用于此类叠层结构可靠连接的新发展方向。
在电火花加工过程中,工具电极与工件之间等离子体通道的高温会对工件表面材料进行熔化去除和部分汽化去除。在电火花加工过程中高温的作用下,工件表面会形成由两层不同性质金属组成的变质层,处于外层的变质层金属被称为熔化凝固层(也被称为重铸层),熔化凝固层是加工过程中被高温熔化的材料重新凝固在工件表面的一层较为疏松的材料。处于里层的变质层金属被称为热影响层,热影响层是工件表面没有熔化或汽化但在高温影响下发生了
微动磨损和微动疲劳广泛存在于轨道交通、航空航天、生物医学等领域中,其造成的微动损伤俗称工业中的“癌症”。压气机作为航空发动机的重要组成部件,服役于高温、高压、高转速的恶劣环境中,其燕尾榫结构在振动和周期性疲劳应力的作用下出现裂纹萌生,产生微动损伤,进而极大降低燕尾榫结构的使用寿命。所以,探究恶劣环境下温度效应对燕尾榫结构的微动损伤机制,准确预测其高温微动疲劳寿命尤为重要。本文以实际服役工况下的航空
近年来,我国航空制造业飞速发展,航空制造技术向自动化、智能化的发展需求愈发迫切。高可靠、高服役性能的新型航空装备对各零部件的结构和质量要求越来越高。为了满足现代航空装备的设计制造要求,构成航空装备的零部件的结构与类型逐渐向着整体化、轻量化以及高精度的方向发展。在航空装备制造中广泛采用铆钉、螺栓连接组成的组合件逐渐被大型整体化零件代替,为达到装备的轻量化提升性能的目的,在不破坏其本身结构性能的情况下
超音速武器、新型战斗机等高速飞行器是航空航天领域的高端装备,为保证使役性能,飞行器在各种速域、姿态时的气动力特性必须被准确评估。风洞试验是获取高速飞行器气动力数据的重要手段。但随着风洞试验飞行器模型的不断增大,传统试验方法的局限性也在日益显露,因此急需寻求一种针对大尺寸飞行器模型的气动六维力测试方法。对于大尺寸飞行器模型,其测试空间受限,基于常规支撑装置与测量方法难以满足风洞试验的尺寸与动态特性要