论文部分内容阅读
随着我国国民经济持续快速发展,基础设施建设得到进一步的完善,桩基础广泛应用于高层建筑、公路桥梁、铁路桥梁、码头等基础工程中。近几年来,我国对高层建筑的需求量越来越大,深基坑工程越来越多,桩基工程质量不仅涉及到建筑物上部结构的安全稳定性,而且关系到人民的生命财产安全,所以我国对桩基工程质量要求更加严苛,不仅要求极高的施工质量,而且力求更加科学并严谨的桩基检测技术。由于桩基工程属于地下隐蔽工程,工程质量除受岩土工程条件、基础与结构设计、桩土相互作用、施工工艺以及专业水平和经验等关联因素影响外,还具有施工隐蔽性高、更容易存在质量隐患的特点,难以发现质量问题,施工完成后,若出现事故时处理更难,所以桩身结构完整性的检测显得十分重要和必要。本文主要研究的是低应变反射波法在桩基完整性检测中的应用,通过现场的数据采集,然后利用低应变仪器固有软件进行不同的低通滤波处理,对比小波分析法处理后的效果图进行解释,突出了小波分析法在低应变反射波法数据处理解释中的优越性,有利于更加精确的判断桩身完整性。低应变反射波法作为一种快速、简便的检测方法,广泛应用于桩基检测中,它通过揭示应力波在桩体中的传播规律以及特征来判断桩身完整性状况及局部缺陷位置,现场采集数据之前,桩顶需要进行打磨处理,在距离桩心2R/3处(R为桩的直径)对称的地方打磨四个直径为3~5cm的平面,然后检波器置于平面上,利用黄油或者牙膏等将它与桩顶粘结紧密,调试好设备参数后在桩顶中心进行敲击,采集不同位置的曲线信号。在实际采集过程中由于桩顶的瞬态冲击方式(比如力锤的头部材料不同、落锤高度不同等)会产生不同频率的应力波,当基桩的缺陷类型或者位置不一样时,不同频率的信号会对其位置的判断形成干扰,从而影响判断结果,所以在对检测数据进行处理过程中,需要对干扰信号进行降噪处理,利用小波分析法提取有用的曲线信号,尽量使缺陷信号变得清晰明了。基桩动测仪器一般都具有Fourier变换功能,可通过速度幅频曲线辅助分析判定桩身完整性,即瞬态频域分析法。干扰信号一般集中于高频,而信号频谱分布于一个有限区间,用Fourier变换将干扰信号变换到频域,然后采用低应变仪器固有的软件进行低通滤波处理,这个是实际应用中常规的数据处理方法,我们希望在常规方法的基础上利用小波变换法进一步分析,在结果解释的时候通过对比,体现出引入小波分析法之后对数据降噪、提取等处理具有更加精确的方法。干扰信号是相对而言的,在判断桩身浅部缺陷时,高频信号比较适用,只是信号复杂,容易误判。本文介绍了浅层缺陷的特征,并同样利用了小波分析法对信号进行了处理,发现该方法也能比较好地提取缺陷信号的特征或者排除干扰信号,从而能够有效地保存有用信号的尖峰和突变部分,方便判定桩身缺陷程度及其位置。本文结合实际工程案例,利用低应变反射波法在桩基完整性中的应用,对现场采集的数据进行了常规方法即低应变固有软件进行处理和分析,然后再结合小波分析法进一步进行数据处理、解释,结果表明在引入了小波分析法之后我们对桩身完整性的判定更加清晰、准确。