论文部分内容阅读
大气激光通信具有抗干扰能力强、保密性好、通信容量大等优势,已经成为当今的研究热点。在大气激光通信中,高精度、高自动化的ATP技术是关系到空间光通信链路能否成功建立以及通信质量好坏的关键技术之一,而对于ATP中光斑位置提取,四象限探测器有其无法比拟的优势。本论文针对四象限探测器信号采集设计了高精度同步数据采集与处理系统,主要实现了既能为ATP系统提供实时脱靶量,又具有计算机存储原始数据的功能。具体研究内容包括:1、介绍了四象限探测器光斑位置检测的原理,深入分析了其对采集与处理系统的要求,并结合大气激光通信的实际应用需求,提出了基于FPGA+DSP+USB 3.0架构的总体设计方案。2、在分析四象限探测器光斑位置检测对数据采集与处理需求的基础上,首先设计了前端全差分调理电路,有效提高了系统的抗干扰能力;然后选择24位四通道同步ΔΣ型数模转换芯片,通过FPGA控制完成四路数据同步采集功能,并通过误差校准、合理布线等方式来提高采集系统的性能;最后利用DSP强大的数字信号处理能力,完成实时处理模块的硬件设计,并在其基础之上实现光斑解算算法,可为ATP实时提供10kHz的脱靶量信息。3、在深入研究USB 3.0的基础上,对USB 3.0核心板进行了二次开发,完成高速率的四象限探测器原始数据存储功能。首先将USB 3.0核心板和实时处理模块相融合完成硬件设计;然后根据系统对数据量和灵活性的要求,将DDRⅡ模拟为FIFO,完成了数据缓冲系统的设计;最后重新设计USB 3.0芯片固件,并根据固件完成了USB 3.0控制逻辑及上位机程序,实现了数据存储功能。4、利用设计完成的采集与处理系统,首先测试了AD的有效分辨率和各通道的同步性,其有效分辨率达到18bit以上;然后测试了实时处理模块实时性,总延时为10μs;最后测试了USB 3.0模块的传输性能,结果表明在传输速率为92MB/s时,无丢包、误码发生,性能稳定可靠。