论文部分内容阅读
垂直腔面发射激光器(Vertical Cavity Surface Emitting Lasers,VCSEL)以其低功耗、低阈值、高光束质量、易于二维集成、高调制速率和低成本制备等优势,现被广泛地应用于光互连、光通信、高速数据传输等领域。然而,传统的VCSEL谐振腔横向尺寸缩小到光波长量级时,由于光衍射极限的限制,无法在纳米量级上实现与微电子器件的集成。自2007年以来,基于金属表面等离子体的纳米激光器开始被广泛关注,由于金属表面等离子体效应,不仅可以使器件谐振腔突破光波长衍射极限的限制,而且具有集成度高、光隔离性强、功耗低、以及开关速度快等优势,因此在光计算、高速数据传输、信息存储、超快数据通信和生物诊断等领域存在巨大的应用潜力。本文以实现VCSEL的小型化为目标,围绕金属-介质表面等离子体、金属波导场分布与模式限制展开深入研究,提出了金属表面等离子体波导VCSEL的结构。在实验上制备出表面等离子体波导结构的VCSEL微米柱,并对其进行了光致发光(Photoluminescence,PL)测试。此外,为提高VCSEL的光输出功率,采用在单个芯片上集成多个VCSEL单元形成二维阵列的方法,制备了2×2和4×4VCSEL阵列器件,通过建立VCSEL阵列的功率转换效率经验模型,对功率转换效率进行了理论分析和拟合计算。本文主要研究内容总结如下:1、根据VCSEL工作原理、金属-介质表面等离子体电磁场特性和色散模型,计算出三层金属平板波导结构和五层金属平板波导结构的模式分布和有效折射率,提出了一种新型的基于金属表面等离子体效应的VCSEL结构。通过计算发现金属表面等离子体VCSEL结构具有更强的模式限制作用,横向尺寸能得到进一步减小。2、提出了金属表面等离子体波导VCSEL的制备工艺流程,并研究了ICP刻蚀规律和VCSEL微米柱转移等关键制备工艺,最终制备了金属表面等离子体波导VCSEL微米柱。利用PL测试系统分别对外延片的表面、量子阱结构、以及VCSEL微米柱分别进行了测试,并对测试结果进行了理论分析,理论分析与实验结果一致。3、对不同氧化孔径VCSEL阵列的功率转换效率进行了理论分析和拟合计算,得到了随着器件氧化孔径的增加,功率转换效率峰值先增加后减小的结论。拟合结果表明阵列氧化孔径为18.6μm时,最大的功率转换效率峰值达到27.91%,并且氧化孔径在15μm-25μm的范围内的功率转换效率峰值能达到最大值的99%以上。实验上16μm和19μm氧化孔径的2×2 VCSEL阵列的功率转换效率峰值分别为28.6%和27.5%,实验结果与拟合计算结果吻合。