论文部分内容阅读
我国正处于能源结构转型关键时期,改善因大规模新能源接入电网带来的频率波动,提高特高压输电受端电网的低频事故风险应对能力,需提高火电机组一次调频有效性和稳定性。对火电机组功频电液调节系统(Digital Electro-Hydraulic Control System,DEH)和协调控制系统(Coordinated Control System,CCS)进行了精确性建模研究,在此基础上研究了机组一次调频能力的评估方法,进一步地对火电机组的一次调频进行了优化研究。DEH伺服系统建模精确与否直接影响阀门仿真精确性,进而影响大功率机组一次调频功率响应仿真。为了提高建模精确性,针对DEH中伺服系统在实际工作中存在的非线性,提出了一种包含限幅、死区和修正系数的非线性伺服系统新模型。将待辨识参数分成线性参数和非线性参数分别辨识,通过建立三层神经网络辨识线性参数,根据阀门流量特性曲线获得非线性参数。以某1000MW超超临界汽轮发电机组调节系统为建模对象,得出限幅参数为1.05,电液转换器时间常数为0.0203,油动机时间常数为0.294,迟缓率为0.00293,以及修正系数为1.093。基于该模型进行仿真验证,得出仿真曲线与实际曲线几乎一致,其中阀门曲线的拟合度达到98.445%,功率曲线的拟合度为96.986%,表明了参数辨识方法的正确性。采用不考虑非线性的伺服系统模型进行对比,发现仿真曲线存在一定偏差,稳定后阀门开度的误差为5%,功率的误差为1.58%,证明了非线性伺服系统模型具有更高精确性。一次调频功率响应不仅涉及汽轮机阀门开度,还需考虑锅炉能量供应的影响,因此不仅要提高DEH建模精确性,还需结合考虑锅炉和汽轮机进行建模。因而采用黑箱建模和机理建模相结合的方法建立CCS模型用于研究机组一次调频。其中,推导建立了制粉系统、管道压损和汽轮机的传递函数和差分方程模型,并采用遗传算法辨识模型参数。由于锅炉的复杂物态转换、换热过程及大惯性大延迟特性,采用神经网络对其建模。使用实际数据对每个模型进行了仿真验证,仿真曲线和实际曲线每个样本点的误差基本都在-3%~3%。基于实际给煤、给水和阀门开度指令,对整体的CCS模型进行仿真验证,得出给煤量、过热器出口压力、主蒸汽压力以及功率的仿真曲线与实际曲线的拟合度均高于90%,验证了CCS模型的正确性。最后,基于该CCS模型仿真了机组的一次调频动态响应,过热器出口压力、主蒸汽压力和功率均与实际值吻合良好,表明模型可用于研究机组的一次调频。研究评估机组一次调频能力有利于掌握区域电力系统的一次调频能力,对于防范电网低频风险具有重要意义。基于上述DEH和CCS建模研究,提出机组一次调频能力评估方法。首先通过DEH和CCS的传递函数耦合模型仿真得出由CCS和DEH协同一次调频是最佳调频控制方式。然后在此基础上仿真分析了几种提升机组调频能力的运行方式如:提升滑压设定值、高加给水旁路、补汽阀补汽以及凝结水节流。进一步地,通过实际机组的一次调频能力试验研究了这些方式的调频效果,结果表明增大主蒸汽调节阀节流对提升机组一次调频能力最直接有效,给水旁路与主蒸汽调节阀结合的调频效果与其相当,且具有持续的负荷维持和提升能力。基于此结论,研究了机组阀门和高加给水旁路的一次调频能力评估方法。对于阀门一次调频能力,分别基于变工况分析和单元机组线性增量数学模型推导出关键映射公式,然后采用神经网络对其建模求解。采用实际运行数据和仿真数据分别进行了验证,预测的主蒸汽压力误差和一次调频能力误差均在合理范围内。针对某电厂超超临界1000MW机组建立EBSILON热力系统模型,研究高加旁路提升机组负荷的能力。分别对高加小旁路、高加混合旁路及高加大旁路等3种旁路方式进行仿真,结果表明旁路最前一级高加才能有效增加机组功率。基于此,仿真得到不同负荷率下功率增量与旁路流量之间的关系曲线,以及旁路前后热耗率与负荷率之间的关系曲线。对比分析机组通过阀门节流调节与高加混合旁路调节的热耗率,表明在保证一次调频能力的基础上,采用高加混合旁路调节能有效的提高机组调频能力和运行经济性。大功率机组一次调频参数是影响自身调频动态稳定与维持电网频率稳定的关键因素,基于一次调频能力的研究,建立以总煤耗量及NOx排放最低为目标函数、以电网一次调频稳定、机组一次调频稳定条件及电网要求的速度不等率范围为约束条件的优化模型,来优化各机组速度不等率设置。采用IEEE300节点模型进行仿真试验,仿真结果表明此算法可以保证机组快速完成一次调频任务,并且具有最佳经济性。将优化模型拓展至深度调峰机组,仿真结果表明需适当突破电网一次调频标准的约束来设置速度不等率。采用该优化方案,有利于提高电力系统一次调频快速性和稳定性。另外,考虑到机组调峰深度与调峰能力在一定程度上不可兼得,为了防范电网低频风险,且使电力系统运行经济的同时具备足够的调峰裕度,提出了考虑一次调频能力的机组负荷优化分配模型,并引入新型正弦余弦算法求解。以某电厂4台机组为例验证模型的有效性,分别采用SCA和遗传算法寻优计算并与自动发电控制指令对比,结果表明SCA的最优解比GA精度更高,而且新模型既能保证足够的一次调频备用容量又有更高经济性。通过仿真得出不同负荷率最优经济成本与一次调频备用容量的关系曲线,总结了此规律对负荷优化分配的指导意义。最后仿真研究低负荷率时的负荷分配,结果表明模型会优先选取经济性较好的机组进行深度调峰,以保证整体最佳经济性。本文对大功率机组一次调频进行纵向研究,首先研究提高了DEH和CCS建模的精确性,以保证一次调频建模的精确性。然后提出了基于神经网络的最大调频能力评估方法和基于EBSILON建模的高加旁路一次调频能力评估方法,可简捷高效的获得机组的一次调频能力。最后提出一种全新的优化策略,将一次调频能力纳入优化的约束条件,使机组在能保证电网足够一次调频能力的基础上,分别实现不同机组速度不等率以及负荷分配的联合优化。研究内容对增强电网消纳新能源发电的能力,提高大功率机组运行灵活性具有重要参考价值。