使用深度学习的恶意网址检测

来源 :山东科技大学 | 被引量 : 0次 | 上传用户:userbyf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In recent years,with the rapid development of the Internet,websites registering becomes extremely easy.So,the number and size of websites grow rapidly.On one hand,this has become an important part of our everyday life for information communication and knowledge dissemination.It helps to transact information timely,rapidly and easily.On the other hand,Malicious URLs host unsolicited content(spam,phishing,drive-by exploits,etc.)and lure unsuspecting users to become victims of scams(monetary loss,theft of private information,and malware installation),and cause losses of billions of dollars every year.it also provides living space for malicious websites.URL detection is one of the most important technologies to prevent attacks from malicious websites.However,to detect such crimes systems should be fast and precise with the ability to detect new malicious content.Traditionally,this detection is done mostly through the usage of blacklists.However,blacklists cannot be exhaustive,and lack the ability to detect newly generated malicious URLs.As malicious URL becomes more complex,traditional URL detection methods seem to be unable to handle it.Thus,it is particularly important to explore new,more reliable and accurate URL detection methods.Our work is a high-precision,susceptible-learning and rapidly-reacting malicious URL detection system based on the deep learning algorithms.The whole work can be divided into three parts:the features selecting and processing,the training part and the classification part.In the features selecting and processing,we get the word2vec feature,TF-IDF feature and content-based feature respectively.These features have been used to train different machine learning and deep learning algorithms to detect and predicting URLs it is good or bad.In the results section,the performance evaluation of each of these algorithms have been presented.The results show that the algorithns Convolutional Neural Network(CNN)achieved the highest accuracy to compared with two other algorithms to know(SVM,LR).In the final classification stage,we use a layer of a fully connected network to further address the three probability matrices,and give a final result(malicious,benign).
其他文献
本文对各类资产减值的相关内容以表格的形式作了归纳,并探讨了新《资产减值准则》的特点及其在实施中将存在的不足。
移动模型决定节点如何移动,它是对节点运动方式的抽象,已被广泛应用于无线网络相关研究中。首先介绍了当前常用的移动模型,并对其进行了分类比较;接着论述了当前研究主要集中在提
今年以来,在国家惠农利好政策实施下,随着云南省对外物流运输基础设施不断完善以及通关便利化程度的大幅提高,全省特色农产品出口形势继续向好,多个优势品种出口继续延续上年
文章通过对新疆师范大学体育教育专业田径普修课教学效果现状的调查与分析,了解目前体育教育专业田径普修课的教学效果及影响田径普修课教学效果的主、客观因素,为自治区高校
德宏州吸毒者HIV感染占全省吸毒及HIV感染者的95%以上,其州内不同县市HIV静注感染率明显不同,1992年3~4月,对该州2县1市戒毒所中843名吸毒者(包括282名静注者)调查,HIV静注感染率瑞丽市为792%,陇川为47%,潞西为51%,在瑞丽,影
目前关于公钥基础设施(public key infrastructure)中证书撤销问题的主要解决方案是使用X.509证书撤销列表(Certifi-cate Revocation List)来定期发布证书状态信息。现有的发布机
隔热材料的隔热性能的优劣决定着保温节能效果的优劣和成本的高低。本文从不同角度介绍了隔热材料的类型,综合了隔热材料的有关隔热理论,根据理论分析了隔热材料内部的传热过程
一项小鼠研究表明,一种肠道益生菌有助于减轻ALS症状。当生成维生素B 3的细菌生活在小鼠肠道中时,发生类似于肌萎缩侧索硬化症(ALS)或称之为洛盖赫里格病(Lou Gehrig)的退行
<正>在全球化语境下,文化的冲突源于共性和个性的矛盾。文化的共性表现在时代主题、时代语境、时代精神等,而文化的个性表现在民族特殊性、群体特殊性和个体特殊性,在全球化
)以法国叙述学家Gerard Genette的叙述话语理论为指导,探讨无时性叙述在纳博科夫《微暗的火》中的运用,以期在一定程度上丰富该小说的叙述时间研究。