高功率激光束中高频位相畸变特性的研究

来源 :中国工程物理研究院 | 被引量 : 16次 | 上传用户:redbattleline
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高功率激光束焦斑特性是影响聚变物理实验的关键因素之一。焦斑特性主要取决于聚焦前的光束位相分布,其中低频位相畸变主要决定焦斑主瓣,中高频位相畸变主要决定焦斑旁瓣。有关低频位相畸变的研究很多,通过低频位相畸变的研究我们掌握了它的传输规律、与焦斑主瓣的关系,还通过限制光学元件低频位相噪声以及利用变形镜对它采取了主动控制措施。对中高频位相畸变来说,由于其传输性质复杂,还没有掌握它的传输规律,以及它与焦斑旁瓣的关系,更无法对它采取控制措施。 高功率激光束中高频位相畸变主要来源于装置中成百上千个光学元件,如果不加以控制,经过叠加和非线性增长在打靶聚焦时会引起高强度的焦斑旁瓣,高强度的旁瓣打在靶洞边沿会形成等离子体堵孔而导致实验失败。同时高通量运行时中高频位相畸变还有引起自聚焦导致光学元件破坏的风险。因此通过研究高功率激光束中高频位相畸变的传输性质及其对焦斑旁瓣的影响,找到有效控制中高频位相畸变的措施,对实现ICF驱动器打靶是非常有意义的。本文研究的主要内容和主要进步点有以下几个方面: (1) 基于B-T理论,通过高功率激光束位相畸变的空间频率非线性增长特性的研究,以及装置打靶对焦斑的物理要求,建立了高中低频位相畸变的划分方法。并根据这种划分方法,划分了神光Ⅲ原型装置高中低频位相畸变的范围。 (2) 由于实际装置中中高频位相畸变的传输物理过程比较复杂,首先将问题简单化处理,建立了一个简单的局部中高频位相畸变的模型,研究了局部位相畸变对近场调制的影响规律。然后根据神光Ⅲ原型装置的实际情况数值模拟了由光学元件引入的位相畸变对光束近场的影响,并通过分析级间B积分和空间滤波器小孔对近场均匀性的作用,讨论了控制光束近场均匀性的主要措施。 (3) 基于波前畸变PSD的定义和光束近远场之间的傅立叶变换关系,通过对正弦函数波前的解析分析,得到了在中高频位相畸变的幅度满足Φ<<2时,中高频位相畸变PSD与焦斑旁瓣具有非常好的近似关系,并且这个关系只取决于中高频位相畸变的幅度Φ,与空间频率没有关系。还用数值的方法验证了这个结论是正确的。 (4) 基于B-T理论研究了各种空间频率成分位相噪声在频谱面上的非线性增长特性,并研究了表征位相畸变各种空间频率成分分布的PSD的线性传输和非线性传输规律。在满足B-T理论成立的条件时,得到了中高频位相畸变传输前后的PSD满足的解析关系式。还从波前PSD的定义出发,用解析的方法分析了中高频位相畸变PSD的叠加规律,初步研究了用部分相干叠加方法、并基于PSD的光学元件技术指标分解技术。
其他文献
均衡器是现代数字通信系统的一个关键设备,它可以最大限度的提高通信系统的数据传输速率。随着无线和移动通信的迅速发展,盲均衡技术成为人们关注的热点。 本文围绕盲均衡器
抗菌肽是上个世纪70年代由瑞典科学家Boman H G首次发现的,其具有优良的光谱抗菌性能,无残留,不会导致耐药菌株的出现,是目前抗生素类较有潜力的替代品。早在上世纪80年代,人
在航空兵器自动化生产线上,智能车运行轨迹的选择对于提高生产线效率十分重要。本文结合优化算法数学模型的分析,建立基于Dijkstra算法的自动寻路模型,利用MATLAB对最优结果
基于应用于大气水汽和液态水测量的双频毫米波辐射计,本文深入研究了它的参数和性能测试方法,分析了测试结果。设计了双频毫米波辐射计的两维伺服驱动器和驱动软件;完成了8mm
在全面从严治党与大数据的时代背景下,数据挖掘与分析和医院纪检监察工作深度融合非常必要。大数据可以作为监督执纪问责的有力抓手,为有针对性地开展精准监督提供数据参考。
<正>谈起煤炭去产能,重庆市可谓硕果累累,但同时也颇有些无奈。截至2018年,重庆市已关闭了全市90%的煤矿,目前保留煤矿的数目仅剩53个,且在2018年还将计划关闭4个煤矿。但是,
单光子源是量子信息领域的关键器件。本论文以研制半导体基的单光子源为背景,研究了与之相关的微腔理论,具体的说,是量子点与光子晶体微腔耦合系统的动力学理论。论文首先提
春秋以前,天命是人们一切行动的最终价值根源,西周时期提出“以德配天”的观念把人们以前仅仅盯在天上的目光拉回了地面,把统治者的德行好坏作为天命转移的根据,从而将对“天
随科技的发展,电子技术与辐射环境的关系愈来愈密切。大规模现场可编程集成电路FPGA在电子领域得到了日益广泛的应用,然而,这类器件是由外延CMOS工艺制造的,如果该器件工作于
电磁波理论的应用与发展已经有一百多年的历史,电磁场与电磁波技术已经渗透到人们生活的各个方面。不论是对电磁场问题进行理论分析,还是要解决和设计实际电磁场领域的问题,