论文部分内容阅读
深部煤岩体的“三高两强”赋存环境给矿井巷道支护带来了严重不利影响,是业界一直关注的热点问题之一。作为我国典型深部矿区之一,平顶山矿区主力矿井开采深度已不同程度超过800 m,现有实践表明,深部巷道围岩松软破碎,具有变形大、流变性强等特点,采用浅部巷道的支护技术,巷道围岩难以保持长期稳定。因此,系统深化平顶山矿区深井巷道围岩控制技术的研究具有重要的理论价值和实际意义。本文综合采用现场实测、理论计算、数值模拟和工业性试验等方法,以提高围岩自承能力为核心,对围岩协同控制机理和关键技术进行了深入研究,可为深井巷道支护方式选择和技术参数设计提供参考和借鉴。主要研究成果如下:(1)明确了平顶山矿区主力生产矿井构造应力显著的地应力分布特征,掌握了深井巷道围岩结构特点和典型物理力学特性。结合围岩蠕变试验结果,推演了围岩蠕变等围压三维粘弹塑性本构模型并在多个矿井进行了普适性分析。原位实测分析了巷道围岩强度、内聚力和弹性模量衰减的时空演化特征,建立了围岩强度衰减模型,研究了侧压系数变化对巷道围岩应力演化及变形的影响,掌握了深井巷道全断面持续收缩、底鼓量和两帮移近量明显大于顶板下沉量的总体破坏特征,明确了巷道围岩主要承载区的位置(2.4-3.0m)与力学特性。(2)以深井巷道围岩内外承载结构协同承载、支护(力)协同作用、“支护—围岩”协同控制(“三协同”)为切入点,分别建立了围岩内外承载结构、支护(力)间协同作用和“支护—围岩”(粘)弹塑性“三区两圈”(弹性区-塑性区-破碎区,内承载圈-外承载圈)力学模型,研究了深井巷道内外承载结构协同作用机制及主要影响因素,明确了不同支护强度下深井巷道变形随支护时间的演变规律,揭示了平顶山矿区深井巷道围岩内外承载“三协同”控制机理,确定了协同支护合理的支护强度与时机。(3)根据平顶山矿区深井巷道变形破坏的主要影响因素,将平顶山矿区深井巷道分为高应力型、低强度型和复合型三类,明确了“协同支护构建承载结构,结构协同承载控制围岩变形”的控制思路,明确了以高强支护强化外承载结构、注浆改性内承载结构和卸压改善应力为主要途径的深井巷道承载圈层“强外稳内”控制对策。提出了以双层喷浆、锚杆-锚索(束)注浆、锚索棚支护、底板卸压为核心的四位一体关键支护技术,研发了配套材料及设备,探索完善了相应的注浆工艺措施,构建了协同作用效率评价方法,形成了深井巷道围岩内外协同承载控制技术体系。(4)结合热轧厚壁中空注浆锚杆、锚索和水泥注浆添加剂等新型材料大范围强力锚固的特点,针对高应力低强度复合型、低强度型、高应力型巷道围岩控制需求,基于深井巷道围岩内外承载协同控制技术体系确定了三类巷道合理的支护方式、参数及支护时机。实测掌握了矿区典型深井巷道围岩变形与破碎破裂区发育特征,建立了巷道表面围岩变形量和协同作用效率间的关系,提出了基于巷道掘前支护效果预估和掘后围岩变形预警的协同效率评价方法并指导巷道支护。上述研究成果在平顶山矿区一矿、四矿的典型深井巷道进行了工业性试验,结果表明,相关技术能有效提高内外承载结构的承载性能,三类巷道内外承载结构的协同作用效率分别达到86.33%、80.8%、86.05%,显著控制了围岩变形。该论文有图142幅,表20个,参考文献182篇。