三轴数控机床在机测量系统精度提升关键技术研究

来源 :安徽理工大学 | 被引量 : 0次 | 上传用户:zhiyuanboxue
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
数控机床在机测量系统能帮助实现通过一次装夹就完成全部或大部分加工和测量工作,保证工件的加工精度,提高产品质量。在机测量系统主要采用“数控机床+测头”的测量方式,利用机床上本身的读数系统(光栅测量系统),辅以测头触发,在装夹工位上实现工件尺寸及形貌的精确测量,但存在着“本体加工,本体测量”的问题,不满足测量系统精度必须高于零件加工精度三倍以上测量基本准则等要求。为了提高和保证在机测量系统测量精度,必须采用误差补偿技术对在机测量系统误差进行补偿。论文以三轴数控机床在机测量系统为研究对象,进一步解决现有研究成果中对于不同影响因素下的误差相关性、动态性影响考虑不足、导轨工作台运动误差补偿方法不够精确、综合误差补偿模型实用性不强等问题。主要工作归纳如下:(1)基于数控机床XY工作台的结构特点及工作特性,开展了 XY工作台动静态特性分析,推导了动态定位误差计算模型。推导结果显示:工作台的运动速度、被测工件重量、工件安装位置及摩擦力、温度是影响数控机床XY工作台动态特性的主要因素。利用自主设计的数控机床XY相关性误差实验平台,进行了不同速度、工件重量、工件安装位置等影响下的动态定位误差实验验证。结果显示数控机床XY工作台的动态定位误差与工作台的运行速度、工作台承受的重量大小等因素有关,且存在着一个“最佳测量速度”。在该速度下工作台的定位误差能达到最小。(2)在误差相关性分析基础上,提出一种导轨系统瞬时旋转中心(简称瞬心)的概念。利用ADAMS运动学仿真方法确定了其理论位置,并利用自主设计的数控机床XY相关性误差实验平台研究了其实际位置确定方法,完成了基于瞬时旋转中心的工作台阿贝定位误差补偿实验,实验结果表明:与原始定位误差最大测量值相比,利用瞬心阿贝臂修正后的定位误差数据比利用传统阿贝误差方法补偿后的定位误差补偿精度高,提高了机床本体定位误差补偿精度。(3)充分考虑温度、速度、位置等工况参数对三轴数控加工中心在机测量系统误差的影响,研究了基于微分变换的综合误差建模方法,利用热变形临界点、瞬时旋转中心的概念建立其综合模型,有效提高了在机测量系统单点测量精度。(4)提出一种“最佳测量区”的概念,最佳测量区是指,当在这个空间范围内完成测量时,在机测量精度最高。研究了三轴数控加工中心最佳测量区确定方法。针对VMC850E三轴数控加工中心,分析了在机测量系统空间点测量误差分布规律,提出一种基于模拟退火的遗传优化算法(SA-GA),利用建立的面向点测量在机测量系统最佳测量区目标函数模型求解最佳测量区。实验结果表明,SA-GA算法收敛速度最快,且单次寻优的耗时少,适合用于求解面向点测量最佳测量区。(5)设计了求解面向点测量的在机测量系统最佳测量区实验方案,开展了VMC850E三轴数控加工中心在机测量系统指定测量空间304.487mm≤X≤475.487 mm,-179.042mm≤Y≤-44.042mm,-315mm≤Z≤-235mm 内,面向点测量最佳测量区实验。实验结果发现,在机测量系统最大测量误差达到74 μm。确定出的最佳测量区域 331.487mm≤X≤340.487mm,-116.042mm≤Y≤-1 07.042mm,-305mm≤Z≤-295 mm最大测量误差最小值为4 μm。结果表明:最佳测量区可以帮助实现在机测量系统测量精度的提高,最大程度上测量精度可以提高94%。图[67]表[12]参[144]
其他文献
学位
学位
学位
学位
学位
学位
学位
学位
学位
学位